Advertisement

Sensory Transduction in Hair Cells

  • Å. Flock
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 1)

Abstract

The neural mechanism that underlies excitation and sensory processing in the inner ear is unlike that of most other mechanoreceptor-nerve preparations in that the receptor is not a part of the sensory neuron but a specialized epithelial cell which excites the sensory neuron by synaptic transmission. The peripheral excitatory processes take place in several sequential stages, and it is difficult to localize the particular stage at which various output characteristics are contributed. This is also because hair cells are used to subserve different functions in the various organs of hearing and equilibrium. It is not intended here to describe the function of separate end-organs as separate entities but to find basic principles of structure and function of hair cells and their nervous connections on a comparative basis.

Keywords

Hair Cell Basal Body Semicircular Canal Receptor Potential Outer Hair Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ades, H. W., Engström, H.: Form and innervation of the vestibular epithelia. In: First symposium on the role of the vestibular organs in the exploration of space. NASA report SP-77. Washington: U. S. G. P. O. 1965.Google Scholar
  2. Adolph, A. R.: Spontaneous slow potential fluctuations in the Limulus photoreceptor. J. Gen. Physiol. 48, 297–322 (1964).PubMedCrossRefGoogle Scholar
  3. Afzelius, B. A.: Flimmer flagellum of the sponge. Nature (Lond.) 191, 1318 (1961).CrossRefGoogle Scholar
  4. Anand, N., Davis, B. D., Armitage, A. K.: The effect of streptomycin on Escherichia coli — uptake of streptomycin by Escherichia coli. Nature (Lond.) 185, 22–23 (1964).CrossRefGoogle Scholar
  5. Barber, U. C.: Preliminary observations on the fine structure of the octopus statocyst. J. Microscopie 4, 547–550 (1965).Google Scholar
  6. Békésy, G. von: Experiments in hearing (Research articles from 1928 to 1958). New York: McGraw Hill Book Co., Inc. 1960.Google Scholar
  7. — Some similarities in sensory perception of fish and man. In: Lateral line detectors. Bloomington: Indiana Univ. Press 1967.Google Scholar
  8. Bergeijk, W.: The evolution of vertebrate hearing. In: Contributions to sensory physiology, Vol. 2. New York: Academic Press Inc. 1967.Google Scholar
  9. Bredberg, G.: Cellular pattern and nerve supply of the human organ of Corti. Acta oto-laryng. (Stockh.) Suppl. 236, 1–135 (1968).Google Scholar
  10. Bullock, F. H., Diecke, F. P. J.: Properties of an infrared receptor. J. Physiol. 134, 47–87 (1956).PubMedGoogle Scholar
  11. Butler, R. A.: Some experimental observations on the DC resting potentials in the guinea pig cochlea. J. Acoust. Soc. Amer. 37, 429–433 (1965).CrossRefGoogle Scholar
  12. Honrubia, V.: Responses of cochlear potentials to changes in hydrostatic pressure. J. Acoust. Soc. Amer. 35, 1188–1192 (1963).CrossRefGoogle Scholar
  13. Capranica, R., Flock, Å., Frishkopf, L. S.: Microphonic response from the inner ear of the bullfrog. J. Acoust. Soc. Amer. 40, 1262 (1966).CrossRefGoogle Scholar
  14. Davis, H.: Excitation in auditory receptors. In: Handbook of Physiology. Section I: Neurophysiology. Washington: Amer. Physiol. Soc. 1959.Google Scholar
  15. — Some principles of sensory receptor action. Physiol. Rev. 41, 391–416 (1961).PubMedGoogle Scholar
  16. — A model for transducer action in the cochlea. Cold Spr. Harb. Symp. quant. Biol. 30, 181–190 (1965).Google Scholar
  17. Dethrage, B. H.: Examination of binaural interaction. J. Acoust. Soc. Amer. 39, 232–249 (1966).CrossRefGoogle Scholar
  18. Dijkgraaf, S.: The functioning and significance of the lateral-line organs. Biol. Rev. 38, 51–105 (1963).PubMedCrossRefGoogle Scholar
  19. Dohlman, G.: Histochemical studies of vestibular mechanisms. In: Neural mechanisms of the auditory and vestibular system. Springfield, III.: Charles C. Thomas, Publ. 1960.Google Scholar
  20. Ormerod, F. C., McLay, K.: The secretory epithelium of the internal ear. Acta oto-laryng. (Stockh.) 50, 243–249 (1959).CrossRefGoogle Scholar
  21. Dubin, D. T., Davis, B. D.: The effect of streptomycin on potassium flux in Escherichia coli. Biochem. biophys. Acta (Amst.) 52, 400–402 (1961).CrossRefGoogle Scholar
  22. Duvall, J., Flock, Å., Wersäll, J.: The ultrastructure of the sensory hairs and associated organelles of the cochlear inner hair cells, with reference to directional sensitivity. J. Cell. Biol. 29, 497–505 (1966).PubMedCrossRefGoogle Scholar
  23. Duvall, A. J., Wersäll, J.: Site of action of streptomycin upon inner ear sensory cells. Acta oto-laryng. (Stockh.) 57, 581–598 (1964).CrossRefGoogle Scholar
  24. Eccles, J. C.: The ion mechanisms of excitatory and inhibitory synaptic action. Ann. N. Y. Acad. Sci. 137, 473–494 (1966).PubMedCrossRefGoogle Scholar
  25. Engström, H., Ades, H. W., Hawkins, J. E.: Structure and functions of the sensory hairs of the inner ear. J. Acoust. Soc. Amer. 34, 1356–1363 (1962).CrossRefGoogle Scholar
  26. Ewald, J. R.: Physiologische Untersuchungen über das Endorgan des Nervus octavus. Wiesbaden: Bergmann 1892.Google Scholar
  27. Eyzaguirre, C., Kuffler, S. W.: Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J. Gen. Physiol. 39, 87–119 (1955).PubMedCrossRefGoogle Scholar
  28. Fernandez-Moran, H.: Cell membrane ultrastructure, low- temperature electron microscopy and x-ray diffraction studies of lipoprotein components in lammellar systems. Circulation 26, 1039–1065 (1962).PubMedGoogle Scholar
  29. Fex, J.: Auditory activity in centrifugal and centripetal fibers in cat, a study of a feedback system. Acta physiol. scand. Suppl. 189, 1–68 (1962).PubMedGoogle Scholar
  30. — Efferent inhibition in the cochlea related to hair cell DC activity of the crossed olivocochlear fibers in the cat. J. Acoust. Soc. Amer. 41, 666–675 (1967).CrossRefGoogle Scholar
  31. Flock, Å.: Structure and function of the macula utriculi with special reference to directional interplay of sensory responses as revealed by morphological polarization. J. Cell Biol. 22, 413–431 (1964).PubMedCrossRefGoogle Scholar
  32. — Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta oto-laryng. (Stockh.) Suppl. 199, 1–90 (1965).Google Scholar
  33. — Ultrastructure and function in the lateral line organs. In: Lateral line detectors. Bloomington: Indiana Univ. Press 1967.Google Scholar
  34. Duvall, A. J.: The ultrastructure of the kinocilium of the sensory cells in the inner ear and lateral line organs. J. Cell Biol. 25, 1–8 (1965).PubMedCrossRefGoogle Scholar
  35. Kimura, R., Lundquist, P.-G., Wersäll, J.: Morphological basis of directional sensitivity of the outer hair cells in the organ of Corti. J. Acoust. Soc. Amer. 34, 1351–1355 (1962).CrossRefGoogle Scholar
  36. Wersäll, J.: A study of the orientation of the sensory hairs of the receptor cells in the lateral line organ of a fish with special reference to the function of the receptors. J. Cell Biol. 15, 19–27 (1962).PubMedCrossRefGoogle Scholar
  37. Frank, K., Fuortes, M.: Excitation and conduction. Ann. Rev. Physiol. 23, 357–386 (1961).CrossRefGoogle Scholar
  38. Friedmann, I.: The chick embryo otocyst: A model ear. J. Laryngol. Otol. 82, 185–202 (1968).PubMedGoogle Scholar
  39. Frishkopf, L. S.: Excitation and inhibition of primary auditory neurons in the little brown bat. J. Acoust. Soc. Amer. 36, 1016 (1964).CrossRefGoogle Scholar
  40. Flock, Å.: Ultrastructure of the basilar papilla in the bullfrog. J. Acoust. Soc. Amer. 41, 1578 (1967).CrossRefGoogle Scholar
  41. Furshpan, E. J.: Electrical transmission at an excitatory synapse in a vertebrate brain. Science 144, 878–880 (1964).PubMedCrossRefGoogle Scholar
  42. Furukawa, T., Ishii, Y.: Neurophysiological studies on hearing in gold fish. J. Neurophysiol. 30, 1377–1403 (1967 a).PubMedGoogle Scholar
  43. — — Effects of static bending of sensory hairs on sound reception in the gold fish. Jap. J. Physiol. 17, 572–588 (1967b).CrossRefGoogle Scholar
  44. Gage, P. W., Hubbard, J. I.: Evidence for a poisson distribution of miniature end plate potentials and some implications. Nature (Lond.) 208, 395–396 (1965).CrossRefGoogle Scholar
  45. Gibbons, I. R.: The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J. biophys. biochem. Cytol. 11, 179–205 (1961).PubMedCrossRefGoogle Scholar
  46. Goldstein, M.: The auditory periphery. In: Medical Physiology. St. Louis: Mosby 1968. 2, 1465–1498.Google Scholar
  47. Görner, P.: Untersuchungen zur Morphologie und Elektrophysiologie des Scitenlinieorgans vom Krallenfrosch (Xenopus laevis Daudin). Z. vergl. Physiol. 47, 316–338 (1963).Google Scholar
  48. Gray, E. G., Pumphrey, R. J.: Ultrastructure of the insect ear. Nature (Lond.) 181, 618 (1958).CrossRefGoogle Scholar
  49. Griffin, D. R., Webster, F. A., Michael, C. R.: The echolocation of flying insects by bats. Anim. Behav. 8, 141–154 (1960).CrossRefGoogle Scholar
  50. Grundfest, H.: Synaptic and ephatic transmission. In: Handbook of physiology. Section I: Neurophysiology. Washington: Amer, physiol. soc. 1959.Google Scholar
  51. — Effects of drugs on the central nervous system. Ann. Rev. Pharmacol. 4, 341–364 (1964).CrossRefGoogle Scholar
  52. — Electrophysiology and pharmacology of different components of bioelectric transducers. Cold Spr. Harb. Symp. quant. Biol. 30, 1–14 (1965).Google Scholar
  53. Gualtierotti, T., Alltucker, D.: The relationship between the unit activity of the utriclesaccule of the frog and information transfer. In: Second symp. on the role of the vestibular organs in space exploration. NASA report SP-115. Washington: U. S. G. P. O. 1966.Google Scholar
  54. Guinan, J. J., Jr., Peake, W. T.: Middle ear characteristics of anesthetized cats. J. Acoust. Soc. Amer. 41, 1237–1261 (1967).CrossRefGoogle Scholar
  55. Hama, K.: A study of the fine structure of the saccular macula of the gold fish. Z. Zellforsch. 94, 155–171 (1969).PubMedCrossRefGoogle Scholar
  56. Håkansson, C. H., and Toremalm, N. G.: Studies on the physiology of the trachea. III. Electrical activity of the ciliary cell layer. Amer. Otol. Rhinol. Laryngol. 75, 1007–1019 (1966).Google Scholar
  57. Harris, G. G.: Brownian motion in the cochlear partition. J. Acoust. Soc. Amer. 40, 1264 (1966).CrossRefGoogle Scholar
  58. Bergeuk, van, W. A.: Evidence that the lateral-line organ responds to the nearfield displacements of sound sources in water. J. Acoust. Soc. Amer. 34, 1831–1841 (1962).CrossRefGoogle Scholar
  59. Milne, D. C.: Input-output characteristics of the lateral-line organs of Xenopus laevis. J. Acoust. Soc. Amer. 40, 32–42 (1966).CrossRefGoogle Scholar
  60. Flock, Å.: Spontaneous and evoked activity from the Xenopus laevis lateral line. In: Lateral Line Detectors. Bloomington: Indiana Univ. Press 1967.Google Scholar
  61. Frishkopf, L., Flock, Å.: Receptor potentials in the hair cells of mudpuppy lateral line. J. Acoust. Soc. Amer. 45, 300–301 (1969).CrossRefGoogle Scholar
  62. — — — Receptor potentials from hair cells of the lateral line. Science 167, 76–79 (1970).PubMedCrossRefGoogle Scholar
  63. Hartline, H. K., Wagner, H. G., MacNichol, E. J.: The peripheral origin of nervous activity in the visual system. Cold Spr. Harb. Symp. quant. Biol. 17, 125–141 (1952).Google Scholar
  64. Hawkins, J.: Cytoarchitectural basis of the cochlear transducer. Cold Spr. Harb. Symp. quant. Biol. 30, 147–157 (1965).Google Scholar
  65. Henriksson, N. G., Gleisner, L.: Vestibular activity of experimental variation of labyrinthine pressure. Acta oto-laryng. (Stockh.) 61, 380–386 (1966).CrossRefGoogle Scholar
  66. Hibbard, E.: Selective innervation and reciprocal functional suppression from grafted extra labyrinths in amphibians. Expl. Neurol. 10, 271–283 (1964).CrossRefGoogle Scholar
  67. Hilding, D. A., Websäll, J.: Cholinesterase and its relation to the nerve endings in the inner ear. Acta oto-laryng. (Stockh.) 55, 205–217 (1962).CrossRefGoogle Scholar
  68. Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).PubMedGoogle Scholar
  69. Holst, E. Von: Die arbeitsweise des Statolithenapparates bei Fischen. Z. vergl. Physiol. 32, 60–120 (1950).CrossRefGoogle Scholar
  70. Horridge, G. A.: Intracellular action potentials associated with the beating of the cilia in ctenophore comb plate cells. Nature (Lond.) 205, 602 (1965).CrossRefGoogle Scholar
  71. Hubel, D. H., Wiesel, T. N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).PubMedGoogle Scholar
  72. Iurato, S.: Tectorial membrane. In: Submicroscopie structure of the Inner Ear. Oxford: Pergamon Press 1967.Google Scholar
  73. Jahnke, V., Lundquist, P.-G., Wersäll, J.: Some morphological aspects on sound perception in birds. Acta Oto-laryng. 67, 583–601 (1969).CrossRefGoogle Scholar
  74. Jensen, C.E., Vilstrup, T.: On the chemistry of human cupulae. Acta Oto-laryng. 52, 383 (1960).CrossRefGoogle Scholar
  75. Jielof, R., Spoor, A., DeFries, H.: The microphonic activity of the lateral line. J. Physiol. 116, 137–157 (1952).PubMedGoogle Scholar
  76. Johnston, B. M., Boyle, A. J. F.: Basilar membrane vibration examined with the Möss-bauer Technique. Science 158, 389–390 (1967).CrossRefGoogle Scholar
  77. Kaneko, A., Hashimoto, H.: Recording site of single cone response determined by an electrode marking technique. Vision Res. 7, 847–851 (1967).PubMedCrossRefGoogle Scholar
  78. Katsuki, Y., Uschiyama, H., Totsuka, G.: Electrical responses of the single hair cell in the ear of fish. Proc. Japan. Acad. 30, 248–255 (1954).Google Scholar
  79. — — Note on the hair cell potential of the ear of fish. Proc. Japan. Acad. 31, 99 (1955).Google Scholar
  80. Yanagisawa, K., Kanzaki, J.: Tetraethylammonium and tetrodotoxin: effects on cochlear potentials. Science 151, 1544–1545 (1966).PubMedCrossRefGoogle Scholar
  81. Katz, B., Milledi, R.: Tetrodotoxin and neuromuscular transmission. Proc. Roy. Soc. (Lond.) Ser. B. 167, 8–22 (1967).CrossRefGoogle Scholar
  82. Kiang, N. Y.-S., Watanabe, T., Thomas, E. C., Clark, L. F.: Discharge patterns of single nerve fibers in the cat’s auditory nerve. Research monograph No. 35. The MIT Press, Cambridge, Massachusetts (1965).Google Scholar
  83. Kikuchi, K., Hilding, D. A.: The development of the organ of Corti in the mouse. Acta oto-laryng. (Stockh.) 60, 207–222 (1965).CrossRefGoogle Scholar
  84. Kimura, R.: Hairs of the cochlear sensory cells and their attachment to the tectorial membrane. Acta oto-laryng. (Stockh.) 61, 55–72 (1966).CrossRefGoogle Scholar
  85. Komnick, H., Komnick, U.: Elektronenmikroskopische Untersuchungen zur Funktionellen Morphologie des Ionentransportes in der Salzdrüse von Larus argentatus. Z. Zellforsch. 60, 163–203 (1963).CrossRefGoogle Scholar
  86. Kuiper, J. W.: The microphonic effect of the lateral line organ. Publ. Biophys. Group „Natuurkundig laboratorium”, Groningen, 1–159 (1956).Google Scholar
  87. Kusano, K., Livengood, D. R., Werman, R.: Correlation of transmitter release with properties membrane of the presynaptic fiber of the squid giant synapse. J. gen. Physiol. 50, 2579–2601 (1967).PubMedCrossRefGoogle Scholar
  88. Lagrange, J. L.: Oevres de Langrage. Paris: Serret et Darboux 1867–1892.Google Scholar
  89. Loewenstein, W. R.: Excitation and inactivation in a receptor membrane. Ann. N. Y. Acad. Sci. 94, 510–534 (1961).PubMedCrossRefGoogle Scholar
  90. — Permeability of membrane junctions. Ann. N. Y. Acad. Sci. 137, 441–472 (1966).PubMedCrossRefGoogle Scholar
  91. Terzuolo, C. A., Washizu, Y.: Seperation of transducer and impulse-generating processes in sensory receptors. Science 142, 1180–1181 (1963).PubMedCrossRefGoogle Scholar
  92. Lowenstein, O.: Comparative physiology of the otolith organs. Brit. Med. Bull. 12, 110 – 114 (1956).PubMedGoogle Scholar
  93. Osborne, M. P., Wersäll, J.: Structure and innervation of the sensory epithelia of the labyrinth in the Thornback ray (Raja clavata). Proc. Roy. Soc. Biol. 160, 1–12 (1964).PubMedCrossRefGoogle Scholar
  94. Roberts, T. O. M.: The equilibrium function of the otolith organs of the thornback ray (Raja clavata). J. Physiol. 110, 392–415 (1949).PubMedGoogle Scholar
  95. Lowenstein, O., Sand, A.: The individual and integrated activity of the semicircular canals of the elasmobranch labyrinth. J. Physiol. 99, 89–101 (1940).PubMedGoogle Scholar
  96. Wersäll, J.: A functional interpretation of the electron microscopic structure of the sensory hairs in the cristae of the eleasmobranch Raja clavata in terms of directional sensitivity. Nature (Lond.) 184, 1807–1810 (1959).CrossRefGoogle Scholar
  97. Martin, A. R.: Quantal nature of synaptic transmission. Physiol. Rev. 46, 51–66 (1966).Google Scholar
  98. Miledi, R., Slater, C. R.: The action of calcium on neuronal synapses in the squid. J. Physiol. 184, 473–498 (1966).PubMedGoogle Scholar
  99. Milsttn, J. H., Jones, G. M.: Trigonometric resolution of neural response from the vestibular otolith organ. In: Digest of the 7th Int. Conf. on Medical and Biological Engineering. Stockholm: Almqvist & Wiksell, 1967.Google Scholar
  100. Möller, A. R.: Unit responses in the rat cochlear nucleus to repetitive transient sounds. Acta physiol. scand. 75, 542–551 (1969).PubMedCrossRefGoogle Scholar
  101. Retzius, G.: Das Gehörorgan der Wirbeltiere. II. Das Gehörorgan der Reptilien, der Vögel und der Säugetiere. Stockholm: Die Centraldruckerei 1884.Google Scholar
  102. Robbins, R. G., Baumknight, R. S., Honrubia, V.: Anatomical distribution of efferent fibers in the 8th cranial nerve of the bullfrog (Rana catesbeiana). J. Acoust. Soc. Amer. 41, 1581 (1967).CrossRefGoogle Scholar
  103. Robertson, J. D.: The occurence of a subunit pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brains. J. Cell Biol. 19, 201–221 (1963).PubMedCrossRefGoogle Scholar
  104. Rodieck, R. W., Kiang, N. Y.-S., Gerstein, G. L.: Some quantitative methods for the study of spontaneous activity of single neurons. Biophys. J. 2, 351–368 (1962).PubMedCrossRefGoogle Scholar
  105. Rose, J. E., Brugge, J. F., Anderson, D. J., Hind, J. E.: Phase locked response to low frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol. 30, 769–793 (1967).PubMedGoogle Scholar
  106. Sand, A.: The mechanism of lateral sense organs of fishes. Proc. Roy. Soc. Biol. 123, 472–495 (1937).CrossRefGoogle Scholar
  107. Scarpa, A.: Anatomische Untersuchungen des Gehörs und Geruchs. Aus dem Lateinischen original: Anatomicae disquisitiones de audit et olfactu. Ticini 1789. Nürnberg: Kaspeschen Buchhandlung 1800.Google Scholar
  108. Schmidt, R. S., Fernandez, C.: Labyrinthine DC potentials in representative vertebrates. J. Cell Comp. Physiol. 59, 311–322 (1962).PubMedCrossRefGoogle Scholar
  109. Schmitt, F. O.: Molecular and ultrastructural correlates of function in neurons, neuronal nets, and the brain. Naturwissenschaften 53, 71–79 (1966).PubMedCrossRefGoogle Scholar
  110. Schuknecht, H. F., Churchill, J. A., Doran, R.: The localization of acetylcholinesterase in the cochlea. Arch, oto-laryng. (Stockh.) 69, 549–559 (1959).Google Scholar
  111. Schwartz, E.: Analysis of surface wave perception in some teleosts. In: Lateral line detectors. Bloomington: Indiana Univ. Press 1967.Google Scholar
  112. Schwartzkopff, J.: Vergleichende Physiologie des Gehörs und der Lautäußerungen. Forschr. Zool. 15, 213–336 (1962).Google Scholar
  113. Shouten, J. F., Ritsma, R. L., Lopes Cardozo, B.: Pitch of the residue. J. Acoust. Soc. Amer. 34, 1418–1424 (1962).CrossRefGoogle Scholar
  114. Sjöstrand, F.: A new ultrastructural element of the membranes in mitochondria and of some cytoplasmic membranes. J. Ultrastruct. Res. 9, 340–361 (1963).CrossRefGoogle Scholar
  115. Smith, C.A., Davis, H., Deatherage, B. H., Gessert, C. F.: DC potentials of the membraneous labyrinth. Amer. J. Physiol. 193, 203–206 (1958).PubMedGoogle Scholar
  116. Lowry, O. H., Wu, M. L.: The electrolytes of the labyrinthine fluids. Laryngoscope 64, 141–153 (1954).PubMedGoogle Scholar
  117. Sjöstrand, F. S.: A synaptic structure in the hair cells of the guinea pig cochlea. J. Ultrastruct. Res. 5, 184–192 (1961).CrossRefGoogle Scholar
  118. Spoendlin, H.: Organization of the sensory hairs in the gravity receptors in utricule and saccule of the squirrel monkey. Z. Zellforsch. 62, 701–716 (1964).PubMedCrossRefGoogle Scholar
  119. — Ultrastructural studies of the labyrinth in sequirel monkeys. In: First symposium on the role of the vestibular organs in the exploration of space. NASA report SP-77. Washington U. S. G. P. O.Google Scholar
  120. Spoendlin, H.: Some morphofunctional and pathological aspects of the vestibular sensory epithelia. In: Second symposium on the role of the vestibular organs in the exploration of space. NASA repott SO-115. Washington: U. S. G. P. O. 1966.Google Scholar
  121. Stopp, P. E., Whitfield, I. C.: Summating potentials in the avian cochlea. J. Physiol. 175, 45–46 (1964).Google Scholar
  122. Tasaki, I.: Nerve impulses in individual auditory nerve fibers of guinea pig. J. Neurophysiol. 17, 97–122 (1954).PubMedGoogle Scholar
  123. — Afferent impulses in auditory nerve fibers and the mechanism of impulse initiation in the cochlea. In: Neural mechanisms of the auditory and vestibular system. Springfield, III.: Charles C. Thomas, Publ. 1961.Google Scholar
  124. Davis, H., Eldredge, D. H.: Exploration of the cochlear potentials in the guinea pig with microelectrodes. J. Acoust. Soc. Amer. 26, 765–773 (1954).CrossRefGoogle Scholar
  125. Singer, I.: Membrane macromolecules and nerve excitability: A physico-chemical interpretation of excitation in squid giant axons. Ann. N. Y. Acad. Sci. 137, 792–806 (1966).PubMedCrossRefGoogle Scholar
  126. Spyropolous, C. S.: Stria vascularis as a source of endocochlear potential. J. Neurophysiol. 22, 149–155 (1959).PubMedGoogle Scholar
  127. Teas, D. C., Eldredge, D. H., Davis, H.: Cochlear responses to acoustic transients: an interpretation of whole nerve action potentials. J. Acoust. Soc. Amer. 34, 1438–1459 (1962).CrossRefGoogle Scholar
  128. Terzuolo, C. A., Washizu, Y.: Relation between stimulus strength, generator potential and impulse frequency in strech receptor of crustacea. J. Neurophysiol. 25, 56–66 (1962).PubMedGoogle Scholar
  129. Thurm, U.: Steps in the transducer process of mechanoreceptors. Symp. zool. Soc. Lond. 23, 199–216 (1968).Google Scholar
  130. Trincker, D.: Bestandspotentiale im Bogengangssystem des Meerschweinchens und ihre Änderungen bei experimentellen Cupula-Ablenkungen. Pflügers Arch. ges. Physiol. 264, 351–382 (1957).CrossRefGoogle Scholar
  131. — Neuere Untersuchungen zur Elektrophysiologie des Vestibular-Apparates. Naturwissenschaften 46, 344–350 (1959).CrossRefGoogle Scholar
  132. Vries, H.: Die Reizschwelle der Sinnesorgane als physiologisches Problem. Experientia (Basel) 4, 205–240 (1948).CrossRefGoogle Scholar
  133. Bleeker, I. D.: The microphonic activity of the labyrinth of the pigeon. — II. The response of the cristae in the semicircular canals. Acta oto-laryng. (Stockh.) 37, 298–306 (1949).CrossRefGoogle Scholar
  134. Werner, C. F.: Das Labyrinth. Leipzig: Thieme 1940.Google Scholar
  135. Wersäll, J.: Studies on the structure and innervation of the sensory epithelium of the cristae ampullares in the guinea pig. Acta oto-laryng. (Stockh.) Suppl. 126, 1–85 (1956).Google Scholar
  136. Flock, Å.: Suppression and restoration of the microphonic output from the lateral line organ after local application of streptomycin. Life Sci. 3, 1151–1155 (1964).CrossRefGoogle Scholar
  137. — — Functional anatomy of the vestibular and lateral line organs. In: Contributions to Sensory Physiology, Vol. I. New York: Academic Press Inc. 1965.Google Scholar
  138. — — Lundquist, P.-G.: Structural basis for directional sensitivity in cochlear and vestibular sensory receptors. Cold Spr. Harb. Symp. quant. Biol. 30, 115–145 (1965).Google Scholar
  139. Lundquist, P.-G.: Morphological polarization of the mechanoreceptors of the vestibular and acoustic systems. In: Second symp. on the role of the vestibular organs in the exploration of space. NASA report SP-115. Washington: U. S. G. P. O. 1966.Google Scholar
  140. Wever, E. G., Bray, C. W.: Action currents in the auditory nerve in response to acoustical stimulation. Proc. nat. Acad. Sci. (Wash.) 16, 344–350 (1930).CrossRefGoogle Scholar
  141. Whitfield, I. C., Evans, E. F.: Responses of auditory cortical neurons to stimuli of changing frequency. J. Neurophysiol. 28, 655–672 (1965).PubMedGoogle Scholar
  142. Ross, H. F.: Cochlear-microphonic and summating potentials and the outputs of individual hair cell generators. J. Acoust. Soc. Amer. 38, 126–131 (1965).CrossRefGoogle Scholar
  143. Wolbarsht, M. L., Hanson, I. E.: Electrical activity in the chemoreceptors of the blowfly. III. Dendritic action potentials. J. gen. Physiol. 48, 673–683 (1965).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • Å. Flock
    • 1
  1. 1.StockholmSweden

Personalised recommendations