Skip to main content

Biotransformation

  • Chapter
Modern Inhalation Anesthetics

Abstract

The concept that anesthetics are biochemically inert and are eliminated from the body unchanged was held from the early work of Haggard (1924) until 1962 (van Dyke, 1963). Haggard studied the absorption, distribution, and elimination of diethyl ether and found that he could account for 87% of the anesthetic in the expired air. On this basis it was decided that anesthetics were not metabolized. Haggard’S techniques and studies were commendable but we now know that much of the 13% of unrecovered material had been metabolically altered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlmark, A., Forssman, S.: The effect of trichlorethylene on the organism. Acta Physiol. Scand. 22, 326–339 (1951).

    Article  CAS  Google Scholar 

  • Axelrod, J.: The enzymic cleavage of aromatic ethers. Biochem. J. 63, 634–639 (1956).

    PubMed  CAS  Google Scholar 

  • BardodÄ›j, Z., VyskoÄŤil, J.: The problem of trichloroethylene in occupational medicine: Trichloroethylene metabolism and its effect on the nervous system evaluated as a means of hygienic control. Arch. Ind. Health 18, 581–592 (1956).

    Google Scholar 

  • Barrett, H. M., Johnston, J. H.: The fate of trichloroethylene in the organism. J. Biol. Chem. 127, 765–770 (1939).

    CAS  Google Scholar 

  • Blake, D. A., Rozman, R. S., Cascorbi, H. F., Krantz, J. C., Jr.: Anesthesia LXXIV: Biotransformation of fluroxene. I. Metabolism in mice and dogs in vivo. Biochem. Pharmac. 16, 1237–1248 (1967).

    Article  CAS  Google Scholar 

  • BrĂĽning, A., Schnetka, M.: Ăśber den Nachweis von Trichloräthylen und andern halogenhaltigen organischen Lösungsmitteln. Arch. Gewerbepathol. Gewerbehyg. 4, 740–747 (1933).

    Article  Google Scholar 

  • Butler, T. C.: Metabolic transformations of trichloroethylene. J. Pharmac. Exptl Therap. 97, 84–92 (1949).

    CAS  Google Scholar 

  • Butler, T. C.: Reduction of carbon tetrachloride in vivo and reduction of carbon tetrachloride and chloroform in vitro by tissues and tissue constituents. J. Pharmac. Exptl Therap. 134, 311–319 (1961).

    CAS  Google Scholar 

  • Byington, K. H., Leibman, K. C.: Metabolism of trichloroethylene in liver microsomes. II. Identification of the reaction product as chloral hydrate. Mol. Pharmac. 1, 247–254 (1965).

    CAS  Google Scholar 

  • Cohen, E. N., Hood, N.: Application of low-temperature autoradiography to studies of the uptake and metabolism of volatile anesthetics in the mouse. I. Chloroform. Anesthesiology 30, 306–314 (1969).

    CAS  Google Scholar 

  • Cohen, E. N., Hood, N.: Application of low-temperature autoradiography to studies of the uptake and metabolism of volatile anesthetics in the mouse. II. Diethyl ether. Anesthesiology 31, 61–69 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Conney, A. H.: Pharmacological implications of microsomal enzyme induction. Pharmacol. Revs 19, 317–366 (1967).

    CAS  Google Scholar 

  • Daniel, J. W.: The metabolism of 36Cl-labelled trichloroethylene and tetrachloroethylene in the rat. Biochem. Pharmac. 12, 795–802 (1963).

    Article  CAS  Google Scholar 

  • Dawkins, M. J. R.: Carbon tetrachloride poisoning in the liver of the new-born rat. J. Pathol. Bacteriol. 85, 189–196 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Fabre, R., Truhaut, R.: Contribution Ă  l’étude de la toxicologie du trichlorĂ©thylène. II. RĂ©sultats des Ă©tudes expĂ©rimentales chez l’animal. Brit. J. Ind. Med. 9, 39–43 (1952).

    CAS  Google Scholar 

  • Fouts, J. R., Hart, L. G.: Hepatic drug metabolism during the perinatal period. Ann. N.Y. Acad. Sci. 123, 245–250 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Haggard, H. W.: The absorption, distribution, and elimination of ethyl ether. I. The amount of ether absorbed in relation to the concentration inhaled and its fate in the body. J. Biol. Chem. 59, 737–751 (1924).

    CAS  Google Scholar 

  • Leibman, K. C., McAllister, W. J., Jr.: Metabolism of trichloroethylene in liver microsomes. III. Induction of the enzymic activity and its effect on excretion of metabolites. J. Pharmac. Exptl Therap. 157, 574–580 (1967).

    CAS  Google Scholar 

  • Matsubara, T., Mori, T.: Studies on denitrification. IX. Nitrous oxide, its production, and reduction to nitrogen. J. Biochem. (Tokyo) 64, 863–871 (1968).

    CAS  Google Scholar 

  • Paul, B. B., Rubinstein, D.: Metabolism of carbon tetrachloride and chloroform by the rat. J. Pharmac. Exptl Therap. 141, 141–148 (1963).

    CAS  Google Scholar 

  • Paykoç, Z. V., Powell, Joan F.: The excretion of sodium trichloracetate. J. Pharmac. Exptl Therap. 85, 289–293 (1945).

    Google Scholar 

  • Pietsch, P., Chenoweth, M. B.: Muscle regeneration: Enhancement by ethylene inhalation. Proc. Soc. Exptl Biol. Med. 130, 714–717 (1969).

    CAS  Google Scholar 

  • Powell, Joan F.: Trichlorethylene: Absorption, elimination and metabolism. Brit. J. Ind. Med. 2, 142–145 (1945).

    CAS  Google Scholar 

  • Rehder, K., Forbes, J., Alter, H., Hessler, O., Stier, A.: Halothane biotransformation in man: A quantitative study. Anesthesiology 28, 711–715 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Remmer, H.: Drugs as activators of drug enzymes. In: Proceedings of the First International Pharmacological Meeting: Mode of action of drugs. Vol. 6. Metabolic factors controlling duration of drug action. New York: Macmillan Comp. 1962.

    Google Scholar 

  • SouÄŤek, B., Vlachová, D.: Další metabolity trichlorethylenu u ÄŤlovÄ›ka. Prace Lek. 6, 330– 332 (1954).

    Google Scholar 

  • SouÄŤek, B., Vlachová, D.: Excretion of trichloroethylene metabolites in human urine. Brit. J. Ind. Med. 17, 60–64 (1960).

    Google Scholar 

  • Stier, A.: Trifluoroacetic acid as metabolite of halothane. (Short communication.) Biochem. Pharmac. 13, 1544 (1964).

    CAS  Google Scholar 

  • Stier, A.: The biotransformation of halothane. (Correspondence.) Anesthesiology 29, 388–390 (1968).

    PubMed  CAS  Google Scholar 

  • Stier, A.: Alter, H., Hessler, O., Rehder, K.: Urinary excretion of bromide in halothane anesthesia. Anesthesia & Analgesia 48, 723–728 (1964).

    Google Scholar 

  • van Dyke, R. A.: Discussion. In: Uptake and distribution of anesthetic agents. New York: Blakiston Company–Division of McGraw-Hill Book Company, Inc. 1963.

    Google Scholar 

  • van Dyke, R. A.: Metabolism of volatile anesthetics. III. Induction of microsomal dechlorinating and ether- cleaving enzymes. J. Pharmac. Exptl Therap. 154, 364–369 (1966).

    Google Scholar 

  • van Dyke, R. A., Chenoweth, M. B.: (1) Metabolism of volatile anesthetics. Anesthesiology 26, 348–357 (1965).

    Article  Google Scholar 

  • van Dyke, R. A. Chenoweth, M. B.: (2) The metabolism of volatile anesthetics. II. In vitro metabolism of methoxyflurane and halothane in rat liver slices and cell fractions. Biochem. Pharmac. 14, 603–609 (1965).

    Article  Google Scholar 

  • van Dyke, R. A. Chenoweth, M. B., Larsen, E. R.: Synthesis and metabolism of halothane-l-14C. (Letter to the editor.) Nature 204, 471–472 (1964).

    Article  CAS  Google Scholar 

  • van Dyke, R. A. Chenoweth, M. B., van Poznak, A.: Metabolism of volatile anesthetics. I. Conversion in vivo of several anesthetics to 14CO2 and chloride. Biochem. Pharmac. 13, 1239–1247 (1964).

    Article  Google Scholar 

  • van Dyke, Rikans, L. A.: Effect of the volatile anesthetics on aniline hydroxylase and aminopyrine demethylase. Biochem. Pharmac. 19, 1501–1502 (1970).

    Article  Google Scholar 

  • van Dyke, Wineman, C. G.: Enzymatic dechlorination: In vitro dechlorination of chloroethanes and propanes. Biochem. Pharmac. (in press.)

    Google Scholar 

  • Whipple, G. H.: Pregnancy and chloroform anesthesia: A study of the maternal, placental, and fetal tissues. J. Exp. Med. 15, 246–258 (1912).

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. M., Kennedy, F. S., Wolfe, R. S.: The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry (N.Y.) 7, 1707–1713 (1968).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag/Berlin · Heidelberg

About this chapter

Cite this chapter

van Dyke, R.A. (1972). Biotransformation. In: Chenoweth, M.B. (eds) Modern Inhalation Anesthetics. Handbuch der experimentellen Pharmakologie/Handbook of Experimental Pharmacology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65055-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65055-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65057-4

  • Online ISBN: 978-3-642-65055-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics