Skip to main content

Excretion of Drugs by the Kidney

  • Chapter
Concepts in Biochemical Pharmacology

Abstract

The renal excretion of a foreign organic compound may be a fairly complex phenomenon involving one or several of the following processes: glomerular filtration, active tubular secretion, passive reabsorption and active reabsorption. Depending on which of these processes dominate, the renal clearance of a drug (or its metabolite(s)) can be an important or insignificant component of the overall pharmacokinetic pattern. Thus there are compounds such as the “short- acting” barbiturates whose urinary excretions are so slow as to be almost totally unimportant in the overall economy of the drugs (Bloomer, 1966). On the other hand, the excretion of phenobarbital represents a substantial route of disposition (Waddell and Butler, 1957a) and induced changes in this excretory rate can be of consequence therapeutically. Even more extreme is the example provided by penicillin G whose renal excretion is sufficiently rapid to require occasionally special interventions in order to maintain therapeutically effective drug levels after parenteral administration (Beyer, 1950).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baer, J.E., Paulson, S.F., Russo, H.F., Beyer, K.H.: Renal elimination of 3-methyl- aminoisocamphane hydrochloride (mecamylamine). Amer. J. Physiol. 186, 180–186 (1956).

    PubMed  CAS  Google Scholar 

  • Bahlmann, M., Ochwadt, B.: Untersuchungen über die Para-Aminohippursäure-Clearance in Acidose. Arch. exp. Pathol. Pharmakol. 250, 397–404 (1965).

    CAS  Google Scholar 

  • Baines, A.D., Gottschalk, C.W., Lassiter, W.E.: Microinjection study of p-aminohippurate excretion by rat kidneys. Amer. J. Physiol. 214, 703–709 (1968).

    PubMed  CAS  Google Scholar 

  • Barac-Nieto, M., Cohen, J.J.: Nonest erified fatty acid uptake by dog kidney: effects of probenecid and chlorothiazide. Amer. J. Physiol. 215, 98–107 (1968).

    PubMed  CAS  Google Scholar 

  • Barclay, M.G., Cooke, W.T., Muralt, G.: Effect of increasing plasma levels on tubular excretion of Diodone. J. Physiol. (Lond.) 108, 8p (1949).

    Google Scholar 

  • Berger, L., Yü, T.F., Gutman, A.B.: Effect of drugs that alter uric acid excretion in man on uric acid clearance in the chicken. Amer. J. Physiol. 198, 595–600 (1960).

    Google Scholar 

  • Berndt, W.O., Grote, D.: The accumulation of C14-dinitrophenol by slices of rabbit kidney cortex. J. Pharmacol. (Kyoto) 164, 223–231 (1968).

    CAS  Google Scholar 

  • Berndt, W.O., Mudge, G.H.: Renal excretion of iodipamide: comparative study in the dog and rabbit. Investigative Radiology 3, 414–426 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Beyer, K. H.: Functional characteristics of renal transport mechanisms. Pharmacol. Rev. 2, 227–280 (1950).

    Google Scholar 

  • Beyer, K. H.: Factors basic to the development of useful inhibitors of renal transport mechanisms. Arch. int. Pharmacodyn. 98, 97–118 (1954).

    CAS  Google Scholar 

  • Beyer, K. H., Baer, J.E., Michaelson, J.K., Russo, H.F.: Renotropic characteristics of ethacrynic acid: a phenoxyacetic saluretic-diuretic agent. J. Pharmacol, exp. Ther. 147, 1–22 (1965).

    CAS  Google Scholar 

  • Beyer, K. H., Painter, R.H., Wiebelhouse, V.D.: Enzymatic factors in the renal tubular secretion of phenol red. Amer. J. Physiol. 161, 259–267 (1950a).

    PubMed  CAS  Google Scholar 

  • Beyer, K. H., Russo, H.F., Gass, S.R., Wilhoyte, K.M., Pitt, A.A.: Renal tubular elimination of N1-methylnicotinamide. Amer. J. Physiol. 160, 311–320 (1950b).

    PubMed  CAS  Google Scholar 

  • Beyer, K. H., Russo, H.F., Patch, E.A., Peters, L., Sprague, K.L.: The formation and excretion of acetylated sulfonamides. J. Lab. clin. Med. 31, 65–71 (1946).

    PubMed  CAS  Google Scholar 

  • Beyer, K. H., Tillson, E.K., Russo, H.F., Paulson, S.F.: Physiological economy of darstine, 5-methyl-4-phenyl-l-(l-piperidyl)-3-hexanol methobromide, visceral anticholinergic agent. Amer. J. Physiol. 175, 39–44 (1953).

    PubMed  CAS  Google Scholar 

  • Beyer, K. H., Woodward, R., Peters, L., Verwey, W.F., Mattis, P.A.: The prolongation of penicillin retention in the body by means of para-aminohippuric acid. Science 100, 107–108 (1944).

    Article  PubMed  CAS  Google Scholar 

  • Bloomer, H. A.: A critical evaluation of diuresis in the treatment of barbiturate intoxification. J. Lab. clin. Med. 67, 898–905 (1966).

    PubMed  CAS  Google Scholar 

  • Bluemle, L., Jr., Goldberg, M.: Renal accumulation of salicylate and phenacetin: possible mechanisms in the nephropathy of analgesic abuse. J. clin. Invest. 47, 2507–2514 (1968).

    Article  CAS  Google Scholar 

  • Boger, W.P., Bayne, G.M., Gylfe, J., Wright, L.D.: Renal clearance of pantothenic acid in man: inhibition by probenecid (Benemid). Proc. Soc. exp. Biol. (N.Y.) 82, 604–608 (1953).

    CAS  Google Scholar 

  • Borzelleca, J.F.: Drug movement from the isolated urinary bladder of the rabbit. Arch, int. Pharmacodyn. 154, 40–50 (1965).

    CAS  Google Scholar 

  • Braun, W.: Zum Mechanismus der gegenseitigen Hemmung von Phenolrot, Paraamino-hippursäure und Probenecid. Arch. exp. Pathol. Pharmakol. 239, 400–409 (1960).

    CAS  Google Scholar 

  • Braun, W., Schniewind, H.: Die Anreicherung von Probenecid (35S) in Nierenschnitten des Meer-schweinchens. Arch. exp. Pathol. Pharmakol. 243, 429–438 (1962).

    CAS  Google Scholar 

  • Braun, W., Whittaker, V.P., Lotspeich, W.D.: Renal excretion of phlorizin and phlorizin glucuronide. Amer. J. Physiol. 190, 563–569 (1957).

    PubMed  CAS  Google Scholar 

  • Brodie, B.B., Hogben, C.A.M.: Some physicochemical factors in drug action. J. Pharm. Pharmacol. 9, 345–380 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Brown, C.H., Saffan, B.D., Howard, C.M., Preedy, J.R.K.: The renal clearance of endogenous estrogens in late pregnancy. J. clin. Invest. 43, 295–303 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.L., Samiy, A.H., Pitts, R.F.: Localization of amino-nitrogen reabsorption in the nephron of the dog. Amer. J. Physiol. 200, 370–372 (1961).

    CAS  Google Scholar 

  • Bulger, R.E., Trump, B.F.: Ca++ and K+ ion effects on ultrastructure of isolated flounder kidney tubules. J. Ultrastruct. Res. 28, 301–319 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Burg, M.B., Grantham, J., Abramow, M., Orloff, J.: Preparation and study of fragments of single rabbit nephrons. Amer. J. Physiol. 210, 1293–1298 (1966).

    PubMed  CAS  Google Scholar 

  • Burg, M.B., Isaacson, L., Grantham, J., Orloff, J.: Electrical properties of isolated perfused rabbit renal tubules. Amer. J. Physiol. 215, 788–794 (1968).

    PubMed  CAS  Google Scholar 

  • Burg, M.B., Weller, P.: Iodopyracet transport by isolated perfused flounder proximal renal tubules. Amer. J. Physiol. 217, 1053–1056 (1969).

    PubMed  CAS  Google Scholar 

  • Cafruny, E.J., Gussin, R.Z.: Renal tubular excretion of mercurials in the Aglomerular fish Lophius americanus. J. Pharmacol, exp. Ther. 155, 181–186 (1967).

    CAS  Google Scholar 

  • Campbell, D.E.S.: Modification by bromcresol green or probenecid of the excretion and diuretic effect of three mercurial diuretics, diurgin®, chlormerodrin and mercumatilin. Acta Pharmacol. (Kbh.) 17, 213–232 (1960).

    Article  CAS  Google Scholar 

  • Castles, T.R., Williamson, H.E.: The effect of chlorothiazide on the excretion of uric acid and electrolytes by the chicken. J. Pharmacol, exp. Ther. 142, 231–236 (1963).

    CAS  Google Scholar 

  • Cattell, W.R., Spencer, A.G., Taylor, G.W., Watts, R.W.E.: The mechanism of the renal excretion of oxalate in the dog. Clin. Sci. 22, 43–51 (1962).

    PubMed  CAS  Google Scholar 

  • Cho, K.C., Cafruny, E. J.: Renal tubular reabsorption of p-aminohippuric acid (PAH) in the dog. J. Pharmacol, exp. Ther. 173, 1–12 (1970).

    CAS  Google Scholar 

  • Cho, K.C., Deneau, G.A., Cafruny, E.J.: Reabsorptive transport of glucose and p-aminohippuric acid (PAH) in the Rhesus monkey. Pharmacologist 11, 233 (1969).

    Google Scholar 

  • Cho, K.C., Kim, J.H., Hong, S.K., Lee, W.C.: Kinetic studies on the competition between paraaminohippuric acid (PAH) and Diodrast for renal transport in the dog. Yonsei Med. J. 1, 25–29 (1960).

    Google Scholar 

  • Clapp, J.R.: The effect of protein depletion on urea reabsorption by the kidney. In: Urea and the Kidney. B. Schmidt-Nielsen and D.W.S. Kerr, Eds. Amsterdam, 1970. Excerpta Medica Foundation pp. 200–205.

    Google Scholar 

  • Coe, F.L., Howe, R.W., Goetting, J.A.: Mechanism of monomethylhydrazine excretion by the mammalian kidney. J. Pharmacol, exp. Ther. 163, 216–221 (1968).

    CAS  Google Scholar 

  • Coe, F.L., Korty, P. R.: Mechanism of hydrazine excretion by the mammalian kidney. Amer. J. Physiol. 212, 394–399 (1967).

    PubMed  CAS  Google Scholar 

  • Cohen, J. J., Wittmann, E.: Renal utilization and excretion of a-ketoglutarate in dog: effect of alkalosis. Amer. J. Physiol. 204, 795–811 (1963).

    PubMed  CAS  Google Scholar 

  • Crane, R. K.: Na+-dependent transport in the intestine and other animal tissues. Fed. Proc. 24, 1000–1006 (1965).

    PubMed  CAS  Google Scholar 

  • Crawford, B.: Depression of the exogenous creatinine/inulin or thiosulfate clearance ratios in man by Diodrast and p-aminohippuric acid. J. clin. Invest. 27, 171–175 (1948).

    Article  CAS  Google Scholar 

  • Cross, R.J., Taggart, J.V.: Renal tubular transport: accumulation of p-aminohippurate by rabbit kidney slices. Amer. J. Physiol. 161, 181–190 (1950).

    PubMed  CAS  Google Scholar 

  • Cśaky, T.Z., Hara, Y.: Inhibition of active intestinal sugar transport by digitalis. Amer. J. Physiol. 209, 467–472 (1965).

    PubMed  Google Scholar 

  • Curran, P.F., Schultz, S.G., Chez, R.A., Fuisz, R.E.: Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J. gen. Physiol. 50, 1261–1286 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Cutler, R.E., Glatte, H.: Simultaneous measurement of glomerular filtration rate and effective renal plasma flow with Co57-cyanocobalamine and I125-Hippuran. J. Lab. clin. Med. 65, 1041–1046 (1965).

    PubMed  CAS  Google Scholar 

  • Davis, B.B., Field, J.B., Rodnan, G.P., Kedes, L.H.: Localization and pyrazinamide, inhibition of distal transtubular movement of uric acid-2-C14 with a modified stop-flow technique. J. clin. Invest. 44, 716–721 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Deetjen, P., Sonnenberg, H.: Der tubuläre Transport von P-Aminohippursäure. Arch. Ges. Physiol. 285, 35–44 (1965).

    Article  CAS  Google Scholar 

  • Despopoulos, A.: A definition of substrate specificity in renal transport of organic ions. J. theor. Biol. 8, 163–192 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Despopoulos, A., Pendergrass, L.H., Stoeckinger, J.M.: Influence of analogues of phenylbutazone on renal transport of 4-aminohippurate. Amer. J. Physiol. 205, 489–493 (1963).

    PubMed  CAS  Google Scholar 

  • Domer, F.R.: Cationic excretion by the dog kidney. Amer. J. Physiol. 198, 1053–1055 (1960).

    PubMed  CAS  Google Scholar 

  • Dominguez, A.M., Shideman, F.E.: Effect of malonate and antimycin A on renal tubular transport of p-aminohippurate. Proc. Soc. exp. Biol. (N.Y.) 90, 329–332 (1955).

    CAS  Google Scholar 

  • Edwards, K.D.G., Crawford, M.A., Dempster, W. J., Milne, M.D., Sicinski, A.: Localization of the renal mechanisms of excretion of mecamylamine and indolylacetic acid in the dog. Clin. Sci. 21, 175–188 (1961).

    PubMed  CAS  Google Scholar 

  • Eggleton, M.G.: Tubular reabsorption and secretion. In: Modern Views on the Secretion of Urine. Ed. by Winton, F.R. Boston: Little, Brown & Co. 1956.

    Google Scholar 

  • Elion, G.B., Yü, T.F., Gutman, A.B., Hitchings, G.H.: Renal clearance of oxipurinol, the chief metabolite of allopurinol. Amer. J. Med. 45, 69–77 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Essig, A.: Competitive inhibition of renal transport of p-aminohippurate by analogues of chlorothiazide. Amer. J. Physiol. 201, 303–308 (1961).

    PubMed  CAS  Google Scholar 

  • Essig, A., Taggart, J. V.: Competitive inhibition of renal transport of p-aminohippurate by other monosubstituted hippurates. Amer. J. Physiol. 199, 509–512 (1960).

    PubMed  CAS  Google Scholar 

  • Farah, A., Frazer, M.: Studies on the renal tubular secretion of N1-methylnicotinamide. J. Pharmacol, exp. Ther. 134, 245–250 (1961).

    CAS  Google Scholar 

  • Farah, A., Frazer, M., Porter, E.: Studies on the uptake of N1-methylnicotinamide by renal slices of the dog. J. Pharmacol, exp. Ther. 126, 202–211 (1959).

    CAS  Google Scholar 

  • Farah, A., Koda, F., Frazer, M.: The action of fluoroacetate on the p-aminohippurate uptake by renal slices of the dog. J. Pharmacol, exp. Ther. 113, 169–177 (1955).

    CAS  Google Scholar 

  • Farah, A., Rennick, B.R.: Studies on the renal tubular transport of tetraethylammonium ion in renal slices of the dog. J. Pharmacol, exp. Ther. 117, 478–487 (1956).

    CAS  Google Scholar 

  • Farah, A., Rennick, B.R., Frazer, M.: The influence of some basic substances on the transport of tetraethyl-ammonium ion. J. Pharmacol, exp. Ther. 119, 122–127 (1957).

    CAS  Google Scholar 

  • Fingl, E.: Tubular excretion of creatinine in the rat. Amer. J. Physiol. 169, 357–362 (1952).

    PubMed  CAS  Google Scholar 

  • Foreman, H., Vier, M., Magge, M.: The metabolism of C14-labeled ethylenediamine tetra-acetic acid in the rat. J. biol. Chem. 203, 1045–1053 (1953).

    PubMed  CAS  Google Scholar 

  • Forster, R.P.: Use of thin kidney slices and isolated renal tubules for direct study of cellular transport kinetics. Science 108, 65–67 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Forster, R.P.: Active cellular transport of urea by frog renal tubules. Amer. J. Physiol. 179, 372–377 (1954).

    PubMed  CAS  Google Scholar 

  • Forster, R.P.: Kidney Cells. In: The Cell, vol. 5, pt. 2. Ed. by Brachet, J. and Mirsky, A.E. New York: Academic Press, Inc. 1961.

    Google Scholar 

  • Forster, R.P.: Renal transport mechanisms. Fed. Proc. 26, 1008–1019 (1967).

    PubMed  CAS  Google Scholar 

  • Forster, R.P.: Active tubular transport of urea and its role in environmental physiology. In: Urea and the Kidney. B. Schmidt-Nielsen and D.W.S. Kerr, Eds. Amsterdam, 1970. Excerpta Medica Foundation, pp. 229–237.

    Google Scholar 

  • Forster, R.P., Copenhaver, J.H., Jr.: Intracellular accumulation as an active process in a mammalian renal transport system in vitro. Energy dependence and competitive phenomena. Amer. J. Physiol. 186, 167–171 (1956).

    PubMed  CAS  Google Scholar 

  • Forster, R.P., Hong, S.K.: In vitro transport of dyes by isolated renal tubules of the flounder as disclosed by direct visualization. Intracellular accumulation and transcellular movement. J. cell. comp. Physiol. 51, 259–272 (1958).

    Article  CAS  Google Scholar 

  • Forster, R.P., Taggart, J. V.: Use of isolated renal tubules for the examination of metabolic processes associated with active cellular transport. J. cell. comp. Physiol. 36, 251–270 (1950).

    Article  CAS  Google Scholar 

  • Foflkes, E.C.: Kinetics of p-aminohippurate secretion in the rabbit. Amer. J. Physiol. 205, 1019–1024 (1963).

    Google Scholar 

  • Fromter, E., Hegel, U.: Transtubulare Potential-differenzen an proximalen und distalen Tubuli der Rattenniere. Arch. Ges. Physiol. 291, 107–120 (1966).

    Article  CAS  Google Scholar 

  • Giebisch, G.: The contribution of measurement of electrical phenomena to our knowledge of renal electrolyte transport. Progr. cardiovasc. Dis. 3, 463–482 (1961).

    CAS  Google Scholar 

  • Gillette, J.R.: Comments on comparative patterns of drug metabolism. Fed. Proc. 26, 1040–1043 (1967).

    PubMed  CAS  Google Scholar 

  • Giotti, A., Maynert, E.W.: The renal clearance of barbital and the mechanism of its reabsorption. J. Pharmacol, exp. Ther. 101, 296–309 (1951).

    CAS  Google Scholar 

  • Goldberg, M., Wojtczak, A.M., Ramirez, M.A.: Uphill transport gradient for urea in the renal medulla. In: Urea and the Kidney. B. Schmidt-Nielsen and D.W.S. Kerr, Eds. Amsterdam, 1970, Excerpta Medica Foundation, pp. 293–304.

    Google Scholar 

  • Gottschalk, C.W., Lassiter, W.E., Mylle, M.: Localization of urine acidification in the mammalian kidney. Amer. J. Physiol. 198, 581–585 (1960).

    PubMed  CAS  Google Scholar 

  • Green, R.E., Ricker, W.E., Altwood, W.T., Koh, Y.S., Peters, L.: Studies of the renal tubular transport characteristics of N1-methylnicotinamide and tetraalkylammonium compounds in the avian kidney. J. Pharmacol, exp. Ther. 126, 195–201 (1959).

    CAS  Google Scholar 

  • Gutman, A.B.: Uricosuric drugs with special reference to probenecid and sulfinpyrazone. Advanc. Pharmacol. 4, 91–142 (1966).

    Article  CAS  Google Scholar 

  • Gutman, A.B., Dayton, P.G., Yü, T.F., Berger, L., Chen, W., Sicam, L.E., Burns, J.J.: A study of the inverse relationship between pKa and rate of renal excretion of phenylbutazone analogs in man and dog. Amer. J. Med. 29, 1017–1033 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Hakim, R., Fujimoto, J.M.: Renal tubular transport of C14 serotonin (5HT) and C14 5-hydroxyindole acetic acid (5HIAA) in the chicken. Pharmacologist 11, 233 (1969).

    Google Scholar 

  • Harvey, A.M., Malvin, R.L.: Comparison of creatinine and inulin clearances in male and female rats. Amer. J. Physiol. 209, 849–852 (1965).

    PubMed  CAS  Google Scholar 

  • Helander, C.G., Lindell, S.-E., Westling, H.: The renal removal of C14-labeled histamine from the blood in man. Scand. J. clin. Lab. Invest. 17, 524–528 (1965).

    PubMed  CAS  Google Scholar 

  • Hirsch, G.H., Hook, J.B.: Stimulation of p-aminohippurate transport by slices of rat renal cortex following in vivo administration of triiodothyronine. Proc. Soc. exp. Biol. (N.Y.) 131, 513–517 (1969a).

    CAS  Google Scholar 

  • Hirsch, G.H., Hook, J.B.: Maturation of renal transport of PAH in the newborn. I. Stimulation by penicillin. Pharmacologist 11, 249 (1969b).

    Google Scholar 

  • Hober, R.: Physical Chemistry of Cells and Tissues. Philadelphia: Blakiston Co. 1945.

    Google Scholar 

  • Hong, S.K., Forster, R.P.: Further observations on the separate steps involved in the active transport of chlorophenol red by isolated renal tubules of the flounder in vitro. J. cell, comp. Physiol. 54, 237–242 (1959).

    Article  CAS  Google Scholar 

  • Hook, J.B., Hirsch, G.H.: Maturation of renal transport of PAH in the newborn. II. In vivo and in vitro correlations in the puppy. Pharmacologist 11, 249 (1969).

    Google Scholar 

  • Huang, K.C.: Renal excretion of 1-tyrosine and its derivatives. J. Pharmacol, exp. Ther. 134, 257–265 (1961).

    CAS  Google Scholar 

  • Huang, K.C., Lin, D.S.T.: Kinetic studies on transport of PAH and other organic acids in isolated renal tubules. Amer. J. Physiol. 208, 391–396 (1965).

    PubMed  CAS  Google Scholar 

  • Huang, K.C., Moore, K.B., Campbell, P.O., Jr.: Renal excretion of para-aminosalicylic acid: a two-way tranport system in the dog. Amer. J. Physiol. 199, 5–8 (1960).

    PubMed  CAS  Google Scholar 

  • Hug, C.C., Jr., Mellett, C.B., Cafruny, E.J.: Stop-flow analysis of the renal excretion of tritium-labeled dihydromorphine. J. Pharmacol, exp. Ther. 150, 259–269 (1965).

    CAS  Google Scholar 

  • Josephson, B., Grieg, A., Kaeassaios, G., Kallas, J.: Renal tubular excretion from high plasma levels of para-aminohippurate (PAH) and Diodrast (D) in unanesthetized rabbits. Acta physiol. scand. 30, 11–21 (1954).

    Article  Google Scholar 

  • Kessler, R.H., Hierholzer, K., Gurd, R.S.: Localization of urate transport in the nephron of mongrel and Dalmatian dog kidney. Amer. J. Physiol. 197, 601–603 (1959).

    PubMed  CAS  Google Scholar 

  • Kiil, F.: Dynamics of proximal renal tubular secretion. Nature (Lond.) 189, 927–928 (1961).

    Article  CAS  Google Scholar 

  • Kinter, W.B.: Renal tubular transport of diodrast-I131 and PAH in necturus: evidence for simultaneous reabsorption and secretion. Amer. J. Physiol. 196, 1141–1149 (1959).

    PubMed  CAS  Google Scholar 

  • Kinter, W.B.: Chlorphenol red influx and efflux: microspectro-photometry of flounder kidney tubules. Amer. J. Physiol. 211, 1152–1164 (1966).

    PubMed  CAS  Google Scholar 

  • Kinter, W.B., Leape, L.L., Cohen, J. J.: Autoradiographic study of Diodrast I131 transport in necturus kidney. Amer. J. Physiol. 199, 931–941 (1960).

    PubMed  CAS  Google Scholar 

  • Kleit, S., Levin, D., Perenich, T., Cade, R.: Renal excretion of ascorbic acid by dogs. Amer. J. Physiol. 209, 195–198 (1965).

    PubMed  CAS  Google Scholar 

  • Knoefel, P. K.: Renal transport of some nitro and amino hippuric acids. Proc. Soc. exp. Biol. (N.Y.) 109, 148–150 (1962).

    CAS  Google Scholar 

  • Knoefel, P. K., Huang, K.C.: Biochemorphology of renal tubular transport: hippuric acid and related substances. J. Pharmacol, exp. Ther. 126, 296–303 (1959).

    CAS  Google Scholar 

  • Knoefel, P. K., Huang, K.C., Despopoulos, A.: Conjugation and excretion of the amino and acetamido benzoic acids. Amer. J. Physiol. 196, 1224–1230 (1959).

    PubMed  CAS  Google Scholar 

  • Knoefel, P. K., Huang, K.C., Jarboe, C.H.: Renal tubular transport and molecular structure in the acetamidobenzoic acids. J. Pharmacol, exp. Ther. 134, 266–272 (1961).

    CAS  Google Scholar 

  • Knoefel, P. K., Huang, K.C., Jarboe, C.H.: Renal disposal of salicyluric acid. Amer. J. Physiol. 203, 6–10 (1962).

    PubMed  CAS  Google Scholar 

  • Kriz, W.: Organization of structures within the renal medulla, In: Urea and the Kidney. B. Schmidt-Nielsen and D.W.S. Kerr, eds. Amsterdam: Excerpta Medica Foundation, 1970. pp. 342–357.

    Google Scholar 

  • Ladd, M., Liddle, L., Gagnor, J., Clarke, R.: Glomerular and tubular functions in sheep and goats. J. appl. Physiol. 10, 249–255 (1957).

    PubMed  CAS  Google Scholar 

  • Lassiter, W.E.: Urea transport in the mammalian nephron. In: Urea and the Kidney. B. Schmidt-Nielsen and D.W.S. Kerr, eds. Amsterdam: Excerpta Medica Foundation, 1970. pp. 206–213.

    Google Scholar 

  • Lindahl, K.M., Sperber, I.: Tubular excretion of histamine in the hen. Acta, physiol. scand. 36, 13–16 (1956).

    Article  CAS  Google Scholar 

  • Lindahl, K.M., Sperber, I.: Some characteristics of the renal tubular transport mechanism for histamine in the hen. Acta physiol. scand. 42, 166–173 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Lotspeich, W. D.: Metabolic aspects of renal function. Springfield, Ill.: Charles C. Thomas 1959.

    Google Scholar 

  • Magour, S., Farah, A., Sroka, A.: The partial purification of a carrier-like protein for organic bases from the kidney. J. Pharmacol, exp. Ther. 167, 243–252 (1969).

    CAS  Google Scholar 

  • Malnic, G., Dasilva, A.C., Deangelis, R.C., Gomes, Z.J.: Renal excretion of thiamin by the dog. Amer. J. Physiol. 198, 1274–1278 (1960).

    PubMed  CAS  Google Scholar 

  • Malvin, R.L., Wilde, W.S., Sullivan, L.P.: Localization of nephron transport by stop-flow analysis. Amer. J. Physiol. 194, 135–142 (1958).

    PubMed  CAS  Google Scholar 

  • Maren, T.H.: Obituary — Eli Kennerly Marshall. Pharmacologist 8, 90–94 (1966).

    Google Scholar 

  • Maroske, D., Weiner, I.M.: The renal handling of zoxazolamine (Flexin). J. Pharmacol, exp. Ther. 159, 409–415 (1968).

    CAS  Google Scholar 

  • Marshall, E.K., Jr., Crane, M.M.: The secretory function of the renal tubules. Amer. J. Physiol. 70, 465–488 (1924).

    CAS  Google Scholar 

  • Marshall, E.K., Jr., Vickers, J.L.: The mechanism of the elimination of phenolsulphone-phthalein by the kidney — a proof of secretion by the convoluted tubules. Bull. Johns Hopk. Hosp. 34, 1–7 (1923).

    Google Scholar 

  • May, D.G., Weiner, I.M.: Bidirectional active transport of m-Hydroxybenzoate in proximal tubules of dogs. Amer. J. Physiol. 218, 430–436 (1970).

    PubMed  CAS  Google Scholar 

  • McIsaac, R.J.: The binding of organic bases to kidney cortex slices. J. Pharmacol, exp. Ther. 168, 6–12 (1969).

    CAS  Google Scholar 

  • Milne, M.D., Scribner, B.H., Crawford, M.A.: Nonionic diffusion and the excretion of weak acids and bases. Amer. J. Med. 24, 709–729 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Mudge, G.H., Garlid, K., Weiner, I.M.: Renal tubular secretion of o-acetylaminohippurate. Amer. J. Physiol. 203, 881–885 (1962).

    PubMed  CAS  Google Scholar 

  • Mudge, G.H., McAlary, B., Berndt, W.D.: Renal transport of uric acid in the guinea pig. Amer. J. Physiol. 214, 875–879 (1968).

    PubMed  CAS  Google Scholar 

  • Mudge, G.H., Taggart, J. V.: Effect of 2,4-dinitrophenol on renal transport mechanisms in the dog. Amer. J. Physiol. 161, 173–180 (1950).

    PubMed  CAS  Google Scholar 

  • Nechay, B.R.: Secretion of 2,7-naphthalenedisulphuric acid in the chicken’s renal tubules. Acta Pharmacol. (Kbh.) 19, 146–155 (1962).

    Article  CAS  Google Scholar 

  • Nechay, B.R., Nechay, L.: Effects of probenecid, sodium salicylate, 2,4-dinitrophenol and pyrazinamide on renal secretion of uric acid in chickens. J. Pharmacol, exp. Ther. 126, 291–295 (1959).

    CAS  Google Scholar 

  • Nissen, O.I.: The extraction fraction of p-aminohippurate in the superficial and deep venous drainage area of act kidney. Acta physiol. scand. 73, 329–338 (1968).

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, J.M.B., Romeo, J. A., Mudge, G.H.: Renal tubular secretion of creatinine in the dog. Amer. J. Physiol. 203, 985–990 (1962).

    Google Scholar 

  • Orloff, J., Aronow, L., Berliner, R.W.: The transport of priscoline by the renal tubules. J. Pharmacol, exp. Ther. 109, 214–217 (1953).

    CAS  Google Scholar 

  • Orloff, J., Berliner, R.W.: The mechanism of the excretion of ammonia in the dog. J. clin. Invest. 35, 223–235 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Paul, M.F., Bender, R.C., Nohle, E.G.: Renal excretion of nitrofurantoin (Furadantin). Amer. J. Physiol. 197, 580–584 (1959).

    PubMed  CAS  Google Scholar 

  • Peters, L.: Renal tubular excretion of organic bases. Pharmacol. Rev. 12, 1–35 (1960).

    PubMed  CAS  Google Scholar 

  • Pilktngton, L.A., Binder, R., Dehaas, J.C.M., Pitts, R.F.: Intrarenal distribution of blood flow. Amer. J. Physiol. 208, 1107–1113 (1965).

    Google Scholar 

  • Pilktngton, L.A., Keyl, M.J.: Stop-flow analyses of mepiperphenidol and mecamylamine in the dog. Amer. J. Physiol. 205, 471–476 (1963).

    Google Scholar 

  • Pitts, R.F.: The excretion of phenol red by the chicken. J. cell. comp. Physiol. 11, 99–115 (1938).

    Article  CAS  Google Scholar 

  • Pitts, R.F.: Physiology of the Kidney and Body Fluids, 2nd. Ed. Chicago, 1968. Yearbook Medical Publishers, Inc.

    Google Scholar 

  • Puck, T.T., Wasserman, K., Fishman, A.P.: Some effects of inorganic ions on the active transport of phenol red by isolated kidney tubules of the flounder. J. cell. comp. Physiol. 40, 73–88 (1952).

    Article  CAS  Google Scholar 

  • Quebbemann, A. J., Rennick, B.R.: Catechol transport by the renal tubule in the chicken. Amer. J. Physiol. 214, 1201–1204 (1968).

    PubMed  CAS  Google Scholar 

  • Quebbemann, A. J., Rennick, B.R.: Effects of structural modifications of catecholamines on renal tubular transport in the chicken. J. Pharmacol, exp. Ther. 166, 52–62 (1969).

    CAS  Google Scholar 

  • Rabinowitz, L.: Accumulation of organic nonelectrolytes in the renal medulla: mechanism and consequences. In: Urea and The Kidney, B. Schmidt-Nielsen and D.W.S. Kerr, eds. Amsterdam: Excerpta Medica Foundation, 1970, pp. 323–332.

    Google Scholar 

  • Rennick, B.R.: The renal tubular excretion of choline and thiamine in the chicken. J. Pharmacol, exp. Ther. 122, 449–456 (1958).

    CAS  Google Scholar 

  • Rennick, B.R.: Transport mechanisms for renal tubular excretion of creatinine in the chicken. Amer. J. Physiol. 212, 1131–1134 (1967).

    PubMed  CAS  Google Scholar 

  • Rennick, B.R.: Dopamine: renal tubular transport in the dog and plasma binding studies. Amer. J. Physiol. 215, 532–534 (1968).

    PubMed  CAS  Google Scholar 

  • Rennick, B.R., Calhoon, D.M., Gandia, H., Moe, G.K.: Renal tubular secretion of tetraethylammonium in the dog and the chicken. J. Pharmacol, exp. Ther. 110, 309–314 (1954).

    CAS  Google Scholar 

  • Rennick, B.R., Moe, G.K.: Stop-flow localization of renal tubular excretion of tetraethylammonium. Amer. J. Physiol. 198, 1267–1270 (1960).

    PubMed  CAS  Google Scholar 

  • Rennick, B.R., Moe, G.K., Lyons, R.H., Hoobler, S.W., Neligh, R.: Absorption and renal excretion of the tetraethylammonium ion. J. Pharmacol, exp. Ther. 91, 210–217 (1947).

    CAS  Google Scholar 

  • Rennick, B.R., Pryor, M.Z.: Effects of autonomic drugs on renal tubular transport of catecholamines in the chicken. J. Pharmacol, exp. Ther. 148, 262–269 (1965).

    CAS  Google Scholar 

  • Rennick, B.R., Pryor, M.Z.: Yoss, N.: Inhibition of the renal tubular transport of epinephrine by the benzothiadiazine compounds. J. Pharmacol, exp. Ther. 143, 42–46 (1964).

    CAS  Google Scholar 

  • Rennick, B.R., Pryor, M.Z., Yoss, N.: Renal tubular excretion of dl-epinephrine-2-C14 in the chicken. J. Pharmacol, exp. Ther. 138, 347–350 (1962).

    CAS  Google Scholar 

  • Reubi, F.C.: Objections a la theorie de la separation intrarenal des hematies et du plasma. Helv. med. Acta. 25, 516–523 (1958).

    PubMed  CAS  Google Scholar 

  • Reynard, A.M.: The reversible and irreversible inhibition of N1-methylnicotinamide uptake 351 into rat kidney cortex slices. J. Pharmacol, exp. Ther. 163, 461–467 (1968).

    CAS  Google Scholar 

  • Riklis, E., Quastel, J.H.: Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Canad. J. Biochem. 36, 347–362 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J.B., Thomas, B.H., Wilson, A.: Distribution and excretion of (14C)-neostigmine in the rat and hen. Brit. J. Pharmacol. 25, 234–242 (1965).

    PubMed  CAS  Google Scholar 

  • Roholt, K., Schmidt, V.: The renal clearance of pantothenic acid in man. Scand. J. clin. Lab. Invest. 3, 108–114 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Ross, C.R., Pessah, N.I., Farah, A.: Inhibitory effects of β-haloalkylamines on the renal transport of N-methylnicotinamide. J. Pharmacol, exp. Ther. 160, 375–380 (1968).

    CAS  Google Scholar 

  • Ross, C.R., Pessah, N.I., Farah, A.: Attempts to label the renal carrier for organic bases with dibenamine. J. Pharmacol. exp. Ther. 167, 235–242 (1969).

    PubMed  CAS  Google Scholar 

  • Sanner, E., Wortman, B.: Tubular excretion of serotonin (5-hydroxytryptamine) in the chicken. Acta physiol. scand. 55, 319–324 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Schachter, D., Freinkel, N.: Self-depression of TMPAH in the dog at high plasma PAH levels and its reversibility by acetate. Amer. J. Physiol. 167, 531–538 (1951).

    PubMed  CAS  Google Scholar 

  • Schachter, D., Manis, J.G.: Salicylate and salicyl conjugates: fluorimetric estimation, biosynthesis and renal excretion in man. J. clin. Invest. 37, 800–807 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Schachter, D., Manis, J.G., Taggart, J. V.: Renal synthesis, degradation and active transport of aliphatic acyl amino acids. Relationship to p-aminohippurate transport. Amer. J. Physiol. 182, 537–544 (1955).

    PubMed  CAS  Google Scholar 

  • Schanker, L. S.: Passage of drugs across body membranes. Pharmacol. Rev. 14, 501–530 (1962).

    PubMed  CAS  Google Scholar 

  • Scribner, B.H., Crawford, M. A., Dempster, W.J.: Urinary excretion by nonionic diffusion. Amer. J. Physiol. 196, 1135–1140 (1959).

    PubMed  CAS  Google Scholar 

  • Selkurt, E.E., Wathen, R.L., Santos-Martinez, J.: Creatinine excretion in the squirrel monkey. Amer. J. Physiol. 214, 1363–1369 (1968).

    PubMed  CAS  Google Scholar 

  • Setchell, B.P., Blanch, E.: Conjugation of p-aminohippurate by the kidney and effective renal plasma flow. Nature (Lond.) 189, 230–231 (1961).

    Article  CAS  Google Scholar 

  • Shannon, J.: The excretion of phenol red by the dog. Amer. J. Physiol. 113, 602–610 (1935).

    CAS  Google Scholar 

  • Shannon, J.A.: Renal tubular excretion. Physiol. Rev. 19, 63–93 (1939).

    Google Scholar 

  • Shideman, F.E., Rene, R.M.: Succinate oxidation and Krebs cycle as an energy source for renal tubular transport mechanisms. Amer. J. Physiol. 166, 104–112 (1951).

    PubMed  CAS  Google Scholar 

  • Smith, H.W.: Lectures on the Kidney. Lawrence, Kansas. University Extension Division, University of Kansas, 1943.

    Google Scholar 

  • Smith, H.W.: The Kidney: Structure and Function in Health and Disease. New York: Oxford University Press 1951.

    Google Scholar 

  • Smith, H.W., Goldring, W., Chassis, H.: The measurement of the tubular excretory mass effective blood flow and filtration rate in the normal human kidney. J. clin. Invest. 17, 263–278 (1938).

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.M., Morgenstern, N., Peters, L.: Inhibition of the renal tubular transport and excretion of tetraethylammonium and N’-methylnicotinamide by non-nitrogenous onium compounds. J. Pharmacol, exp. Ther. 158, 451–459 (1967).

    CAS  Google Scholar 

  • Smith, W. W., Smith, H. W.: Protein binding of phenol red, Diodrast, and other substances in plasma. J. biol. Chem. 124, 107–113 (1938).

    CAS  Google Scholar 

  • Sperber, I.: The mechanism of renal excretion of some detoxication products in the chicken. In: Proceedings of the Seventeenth International Physiological Congress, p. 217–218. Oxford, 1947.

    Google Scholar 

  • Sperber, I.: The excretion of some glucuronic acid derivatives and phenol sulphuric esters in the chicken Lantbr-Hogsk. Ann. 15, 317–349 (1948a).

    CAS  Google Scholar 

  • Sperber, I.: The excretion of piperidine, guanidine, methylguanidine and N’-methylnicotinamide in the chicken. Lantbr-Högsk. Ann. 16, 49–64 (1948b).

    Google Scholar 

  • Sperber, I.: The excretion of some organic bases and some phenols and phenol derivatives. Scand. J. clin. Lab. Invest. 1, 345–346 (1949).

    Google Scholar 

  • Sperber, I.: Secretion of organic acids in the formation of urine and bile. Pharmacol. Rev. 11, 109–134 (1959).

    PubMed  CAS  Google Scholar 

  • Stevens, C.E., Dobson, A., Mammano, J.H.: A transepithelial pump for weak electrolytes. Amer. J. Physiol. 216, 983–987 (1969).

    PubMed  CAS  Google Scholar 

  • Swanson, R.E., Hakim, A.A.: A stop-flow analysis of creatinine excretion in the dog. Amer. J. Physiol. 203, 980–984 (1962).

    PubMed  CAS  Google Scholar 

  • Taggart, J. V.: Protein binding of p-aminohippurate in human and dog plasma. Amer. J. Physiol. 167, 248–254 (1951).

    PubMed  CAS  Google Scholar 

  • Taggart, J. V.: Mechanisms of renal tubular transport. Amer. J. Med. 24, 774–784 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Taggart, J. V., Forster, R. P.: Renal tubular transport. Effect of 2,4-dinitrophenol and related compounds of phenol red transport in the isolated tubules of the flounder. Amer. J. Physiol. 161, 167–172 (1950).

    PubMed  CAS  Google Scholar 

  • Tanner, G.A.: Micropuncture study of PAH and diodrast transport in necturus kidney. Amer. J. Physiol. 212, 1341–1346 (1967).

    PubMed  CAS  Google Scholar 

  • Tanner, G. A., Kinter, W.B.: Reabsorption and secretion of p-aminohippurate and diodrast in necturus. Amer. J. Physiol. 210, 221–231 (1966).

    PubMed  CAS  Google Scholar 

  • Terp, R.: Studies on elimination of procaine. III. Determination of the renal clearance of procaine and p-aminobenzoic acid in dog and rabbit. Acta pharmacol. (Kbh.) 7, 259–280 (1951).

    Article  CAS  Google Scholar 

  • Thurau, K.: Renal hemodynamics. Amer. J. Med. 36, 698–719 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Torretti, J., Weinek, I.M., Mudge, G.H.: Renal tubular secretion and reabsorption of organic bases in the dog. J. clin. Invest. 41, 793–804 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Tune, B.M., Burg, M.B., Patlack, O.S.: Characteristics of p-aminohippurate transport in proximal renal tubules. Amer. J. Physiol. 217, 1057–1063 (1969).

    PubMed  CAS  Google Scholar 

  • Uehleke, H., Greim, H.: Stimulation of kidney microsomal drug metabolism by phénobarbital. Arch. Pharmacol, exp. Path. 259, 199 (1967).

    Google Scholar 

  • Ullrich, K.J., Rumrich, G., Baldamus, C. A.: Mode of urea transport across the mammalian nephron. In: Urea and The Kidney. B. Schmidt-Nielsen and D.W.S. Kerr, eds. Amsterdam: Excerpta Medica Foundation, 1970, pp. 175–183.

    Google Scholar 

  • Vander, A. J.: Renal excretion of choline in the dog. Amer. J. Physiol. 202, 319–324 (1962).

    PubMed  CAS  Google Scholar 

  • Vogel, G., Kröger, W.: Das TmpAH der Niere als Na+-abhängige Größe. Arch. Ges. Physiol. 286, 317–322 (1965).

    Article  CAS  Google Scholar 

  • Vogel, G., Kröger, W.: Die Bedeutung des Transports, der Konzentration und der Darbietungsrichtung von Na+ für den tubulären Glucose- undPAH-transport. Arch. Ges. Physiol. 288, 342–358 (1966).

    Article  CAS  Google Scholar 

  • Vogel, G., Lauterbach, F., Kröger, W.: Die Bedeutung des Natriums für die renalen Transporte von Glucose und Para-Aminohippursäure. Arch. Ges. Physiol. 283, 151–159 (1965).

    Article  CAS  Google Scholar 

  • Vogel, G., Stoeckert, I.: Die Bedeutung des Anions für die renal tubulären Transporte von Na+ und die Transporte von Glucose und PAH. Arch. Ges. Physiol. 292, 309–315 (1966).

    Article  CAS  Google Scholar 

  • Volle, R.L., Green, R.E., Peters, L., Handschumacher, R.E., Welch, A.D.: Renal tubular excretion studies with pyrimidine derivatives and analogs. J. Pharmacol, exp. Ther. 136, 353–360 (1962).

    CAS  Google Scholar 

  • Waddell, W.J., Butler, T.C.: The distribution and excretion of phénobarbital. J. clin. Invest. 36, 1217–1226 (1957a).

    Article  PubMed  CAS  Google Scholar 

  • Waddell, W.J., Butler, T.C.: Renal excretion of 5,5-dimethyl-2,4-oxazolidinedione (product of demethylation of trimethadione). Proc. Soc. exp. Biol. (N.Y.) 96, 563–565 (1957b).

    CAS  Google Scholar 

  • Walser, M.: Mathematical aspects of renal function: The dependence of solute reabsorption on water reabsorption and the mechanism of osmotic natriuresis. J. theor. Biol. 10, 307 to 326 (1966).

    Google Scholar 

  • Watrous, W.M., May, D.G., Fujimoto, J.M.: Mechanism of the renal tubular transport of morphine and morphine ethereal sulfate in the chicken. J. Pharmacol, exp. Ther. 172, 224–229 (1970).

    CAS  Google Scholar 

  • Weiner, I.M.: Mechanisms of drug absorption and excretion. Ann. Rev. Pharmacol. 7, 39–56 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Weiner, I.M.: Transport of weak acids and bases. In: Handbook of Physiology, Renal Physiology. R. W. Berliner and J. Orloff, eds. Washington, D.C. 1970 ( In press). American Physiological Society.

    Google Scholar 

  • Weiner, I.M., Blanchard, K.C., Mudge, G.H.: Factors influencing renal excretion of foreign organic acids. Amer. J. Physiol. 207, 953–963 (1964a).

    PubMed  CAS  Google Scholar 

  • Weiner, I.M., Garlid, K.D., Romeo, J. A., Mudge, G.: Effects of tubular secretion and reabsorption on titration curves of tubular transport. Amer. J. Physiol. 200, 393–399 (1961).

    PubMed  CAS  Google Scholar 

  • Weiner, I.M., Glasser, J.E., Lack, L.: Renal excretion of bile acids: taurocholic, glycocholic, and cholic acids. Amer. J. Physiol. 207, 964–970 (1964b).

    PubMed  CAS  Google Scholar 

  • Weiner, I.M., Mudge, G. H.: Renal tubular mechanisms for excretion of organic acids and bases. Amer. J. Med. 36, 743–762 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Weiner, I.M., Washington, J. A., Mudge, G.H.: Studies on the renal secretion of salicylate in the dog. Bull. Johns Hopk. Hosp. 105, 284–297 (1959).

    CAS  Google Scholar 

  • Weiner, I.M., Washington, J. A., Mudge, G.H.: On the mechanism of action of probenecid on renal tubular secretion. Bull. Johns Hopk. Hosp. 106, 333–346 (1960).

    CAS  Google Scholar 

  • Wesson, L.G., Jr.: A theoretical analysis of urea excretion by the mammalian kidney. Amer. J. Physiol. 179, 364–371 (1954).

    PubMed  CAS  Google Scholar 

  • Wilbrandt, W., Rosenberg, T.: The concept of carrier transport and its corollaries in pharmacology. Pharmacol. Rev. 13, 109–183 (1961).

    PubMed  CAS  Google Scholar 

  • Williams, R.T.: Detoxication mechanisms. 2nd ed. London: Chapman and Hall, Ltd. 1959.

    Google Scholar 

  • Yü, T.F., Berger, L., Kupfer, S., Gutman, A.B.: Tubular secretion of urate in the dog. Amer. J. Physiol. 199, 1199–1204 (1960).

    PubMed  Google Scholar 

  • Zins, G.R., Weiner, I.M.: Bidirectional urate transport limited to the proximal tubule in dogs. Amer. J. Physiol. 215, 411–422 (1968a).

    PubMed  CAS  Google Scholar 

  • Zins, G.R., Weiner, I.M.: Bidirectional transport of taurocholate by the proximal tubule of the dog. Amer. J. Physiol. 215, 840–845 (1968b).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Weiner, I.M. (1971). Excretion of Drugs by the Kidney. In: Brodie, B.B., Gillette, J.R., Ackerman, H.S. (eds) Concepts in Biochemical Pharmacology. Handbuch der experimentellen Pharmakologie/Handbook of Experimental Pharmacology, vol 28 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65052-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65052-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65054-3

  • Online ISBN: 978-3-642-65052-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics