Translocation of Drugs into Bone

  • Harry Foreman
Part of the Handbuch der experimentellen Pharmakologie/Handbook of Experimental Pharmacology book series (HEP, volume 28 / 1)


The agglomeration of a high density of inorganic ions into a specialized structure provides bone with functional capabilities that are highly useful, in fact, indispensable to the organism. The utility and survival values of some of these properties are obvious — the structural framework for maintenance of form and shape, for protection of delicate organs, for locomotion and prehension, as well as biochemical capabilities for the provision of a reservoir of inorganic ions for maintenance of the constancy of the ionic environment of the organism. However, there is one group of properties of bone tissue that have no readily apparent survival values and, in fact, are sometimes palpably detrimental to the organism. These are the properties resulting from the special cellular constellation of collagen, complex sulphated polysaccharides, and apatite crystals, which confer on bone tissue the capability of sequestering and retaining, for long periods of time, a variety of exogenous and endogenous materials: lead; rare earths; actinide metals; dyes such as alizarins, triazinyls, and quercetin; metabolites such as bilirubin, carotinoids, and porphyrins; oxidized cytochrome; and drugs such as the tetracyclines.


Dental Caries Sodium Fluoride Amorphous Calcium Phosphate Skeletal Fluorosis Brilliant Yellow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R.L., Jr., Ferguson, A.B., Jr., Brande, A.J.: Bacteriostasis of tetracycline deposited in bone. Surg. Gynec. Obstet. 108, 65–67 (1957).Google Scholar
  2. Bevelander, G., Goldberg, L., Nakahara, H.: The effect of tetracycline on skeletal development. Arch. oral. Biol. 2, 127 (1960).PubMedCrossRefGoogle Scholar
  3. Bevelander, G., Goldberg, L., Nakahara, H.: The effect of tetracycline on skeletal development in the larval sand dollar. Arch. oral. Biol. 2, 127 (1960).PubMedCrossRefGoogle Scholar
  4. Bevelander, G., Goldberg, L., Nakahara, H.: The effect of disease amounts of tetracycline of fluorescence and coloration of teeth. J. Pediat. 68, 114–120 (1966).PubMedCrossRefGoogle Scholar
  5. Rolle, G.D., Cohlan, S.Q.: Inhibition of skeletal formation in the chick embryo following the administration of tetracycline. Nature (Lond.) 184, 728–729 (1959).Google Scholar
  6. Bevelander, G., Goldberg, L., Nakahara, H. Rolle, G.K., Cohlan, S.Q.: The effect of administration of tetracycline on the development of teeth. J. dent. Res. 40, 1020 (1961).CrossRefGoogle Scholar
  7. Carter, M.D., Wilson, F.: Tetracycline and congenital limb abnormalities. Brit. med. J. 2, 407 (1962).CrossRefGoogle Scholar
  8. Cline, M.J., Berlin, L.I.: Studies of the anemia of multiple myeloma. Amer. J. Med. 33, 510 (1962).PubMedCrossRefGoogle Scholar
  9. Cohen, P.: Fluoride and calcium therapy for myeloma bone lesions. J. Amer. med. Ass. 195, 962 (1966).CrossRefGoogle Scholar
  10. Cohen, P., Gardner, F. H.: Induction of skeletal fluorosis in two common demineralizing disorders. J. Amer. med. Ass. 195, 962 (1962).CrossRefGoogle Scholar
  11. Cohen, P.: Induction of a subacute skeletal fluorosis in a case of multiple myeloma. New Engl. J. Med. 271, 1129 (1964).PubMedCrossRefGoogle Scholar
  12. Cohen, P. Nichols, G. L., Banks, H. H.: Fluoride treatment of bone, rarefaction in multiple myeloma and osteoporosis. Clin. Orthop. 64, 221–249. May—June 1969.PubMedGoogle Scholar
  13. Cohlan, S.Q., Bevelander, G., Bross, S.: Effect of tetracycline in bone growth in the premature infant. Antibiot. and Chemother. 340–347 (1961).Google Scholar
  14. Cohlan, S.Q., Bevelander, G., Bross, S., Tiamsic, T.: Growth inhibition of prematures receiving tetracycline. Amer. J. Dis. Child. 105, 453–458 (1963).Google Scholar
  15. Deleu, J.: Tetracycline localization in the early stages of isogenous bone graft. Nature (Lond.) 198, 194 (1963).CrossRefGoogle Scholar
  16. Filippi, B., Mela, V.: Malformazioni congenti foccioli e degli ami da tetraciclina. Minerva Clir. 12, 1 (1957).Google Scholar
  17. Finerman, G.A.M., Milch, R.A.: Interaction of tetracycline with mineral salts and calcified matrices. Bull. Johns Hopk. Hosp. 110, 225 (1962).Google Scholar
  18. Foreman, H.: Studies on the mechanism of plutonium uptake by bone. Hlth Phys. 8, 713 to 716 (1962).Google Scholar
  19. Gardner, F.H., Pringle, J.L., Jr.: Androgens and erythroporises. I. Preliminary clinical observations. Arch, intern. Med. 10, 7846 (1961).Google Scholar
  20. Hakkinen, I.P.T.: The fluorescence of tetracycline in rats treated with dihydrotachysterol. Acta physiol. scand. 42, 282 (1958).PubMedCrossRefGoogle Scholar
  21. Halme, J., Aer, J.: Effect of tetracycline on synthesis of collagen and incorporation of 45calcium into fetal and pregnant rats. Biochem. Pharmacol. 17, 1479–1484 (1968).PubMedCrossRefGoogle Scholar
  22. Hamilton, J. G.: The metabolism of the fission products and the heaviest elements. Radiology 44, 325–343 (1947).Google Scholar
  23. Harcourt, J.K., Johnson, N.W., Storey, E.: Incorporation of tetracycline antibiotic in bone, teeth and egg shells. J. dent. Res. 41, 511 (1962).Google Scholar
  24. Harris, W.H., Jackson, R.H., Jowsey, J.: The “in vivo” distribution of tetracyclines in canine bone. J. Bone Jt Surg. 44-A, 1308–1320 (1962).Google Scholar
  25. Herring, G.M., Vaughan, J., Williamson, M.: Preliminary report on the site of localization and possible binding agent for yttrium, americium and plutonium in cortical bone. Hlth Phys. 8, 717–724 (1962).CrossRefGoogle Scholar
  26. Ibsen, K.H., Urist, M.R.: The biochemistry and physiology of the tetracyclines. Clin. Orthop. 32, 142–169 (1964).Google Scholar
  27. Jee, W.S.S., Arnold, J.S.: The failure of plutonium to deposit in the osteoid of rachitic rats. Hlth Phys. 8, 709–711 (1962).CrossRefGoogle Scholar
  28. Largent, E.J., Bvard, P.G., Heyroth, F.F.: Roentgenographic changes and urinary fluoride excretion among workmen engaged in the manufacture of inorganic fluorides. Amer. J. Roentgenol. 65, 42 (1951).Google Scholar
  29. Larson, R.H., Zipkin, I.: Effect of tetracycline on the transmission of dental caries in rats. J. dent. Res. 40, 264–267 (1961).CrossRefGoogle Scholar
  30. Lawrenz, M., Mitchell, H.H.: Effect of dietary colletum and phosphorus on assimilation of dietary fluorine. J. Nutr. 22, 91 (1941).Google Scholar
  31. Likins, R.L., Pakis, G.A.: Bone growth and uptake of radiocalcium in tetracycline-treated rats. Nature (Lond.) 203, 1069–1070 (1964).CrossRefGoogle Scholar
  32. Macdonald, N.S., Ibsen, K.H., Urist, M.R.: Effect of tetracycline on retention of calcium and strontium in rodents. Proc. Soc. exp. Biol. (N.Y.) 115, 1125–1128 (1964).Google Scholar
  33. Megerian, D., Hodge, H.C.: Fluorine exchange with hydroxyl as the mechanism of fixation of fluoride by bone. Dent. Res. 30, 647 (1951).Google Scholar
  34. Milch, R.A., Rall, D.P., Tobie, J.E.: Bone localization of the tetracyclines. J. nat. Cancer Inst. 19, 87–93 (1957).PubMedGoogle Scholar
  35. Milch, R.H., Tobie, F.E., Robinson, R.A.: A microscopic study of tetracycline localization in skeletal neoplasm. J. Histochem. Cytochem. 9, 261 (1961).PubMedCrossRefGoogle Scholar
  36. Mustakallio, K.K.: Tetracycline and the deposition of calcium. Lancet 721 (1962).Google Scholar
  37. Neuman, W.F., Neuman, M.W.: The nature of the mineral phase of bone. Chem. Rev. 53, 1–37 (1953).CrossRefGoogle Scholar
  38. Main, E.D., O’Leary, V., Smith, F.A.: The surface chemistry of bones II: Fluoride deposition. J. Biol. Chem. 187, 655 (1950).PubMedGoogle Scholar
  39. Owen, L.N.: Tetracycline in teeth and bone. Lancet 972 (1962).Google Scholar
  40. Posner, A.S.: The nature of the inorganic phase in calcified tissues. In: Sognnaes. R. (editor), Calcification in biological systems, pp. 373–394. (1960).Google Scholar
  41. Purves, M.J.: Some effects of administering sodium fluoride to patients with Paget’s disease. Lancet 2, 1188 (1962).PubMedCrossRefGoogle Scholar
  42. Rall, D.P., Loo, Ti Li, Lane, M., Kelly, M.S.: Appearance and persistence of fluorescent material in tumor tissue after tetracycline administration. J. nat. Cancer Inst. 19, 79–85 (1957).PubMedGoogle Scholar
  43. Regna, P.P., Solomons, I.A., Murai, K., Timreck, A.E., Brunings, K.J., Lazier, W.A.: The isolation and general properties of terramycin and terramycin salts. J. Amer. chem. Soc. 33, 4211 (1951).CrossRefGoogle Scholar
  44. Rich, C., Ensinck, J., Ivanovich, P.: Effects of sodium fluoride on calcium, metabolism of subjects with metabolic bone disease. J. clin. Invest 43, 545 (1964).PubMedCrossRefGoogle Scholar
  45. Schwachman, H., Fekete, E., Kulozycki, L.L., Foley, G.E.: The effect of long term antibiotic therapy in patients with cystic fibrosis of the pancreas. Antibiot. Ann. 692–699 (1958–1959).Google Scholar
  46. Schwachman, H., Fekete, E., Kulozycki, L.L., Foley, G.E., Schuster, A.: The tetracyclines. Pediat. Clin. N. Amer. Antibiot. Therapy. 295–303 (1956).Google Scholar
  47. Steendijk, R.: Studies on the mechanism of the fixation of the tetracyclines to bone. Bones and Teeth, pp. 49–63. New York: The Macmillian Company 1964.Google Scholar
  48. Talmadge, R. J., Doty, S.B.: The effects of sodium fluoride on parathyroid function in the rat as studied by peritoneal lavage. Gen. comp. Endocr. 2, 473 (1962).CrossRefGoogle Scholar
  49. Termine, J.D., Posner, A.S.: Bone mineral studies. Science 153, 1523 (1966).PubMedCrossRefGoogle Scholar
  50. Tsevileva, I.A.: The plutonium content in the protein fraction of rat tubular bones. Biochemistry 25, 636–639 (1960).Google Scholar
  51. Urist, M.R., Ibsen, K.H.: Chemical reactivity of mineralized tissue with oxytetracycline. A.M.A. Arch. Path. 76, 484–496 (1963).Google Scholar
  52. Wallman, I.S., Hilton, H.H.: Prematurity, tetracycline and oxytetracycline in tooth development. Lancet Oct. 6, 720–721 (1962).CrossRefGoogle Scholar
  53. Weyman, J.: The clinical appearances of tetracycline staining of the teeth. Brit. dent. J. 118, 289 (1965).PubMedGoogle Scholar
  54. Weyman, J., Porteous, J. R.: Discoloration of teeth possibly due to administration of tetracycline. Preliminary Report. Brit. dent. J. 113, July (1962).Google Scholar
  55. Williamson, M., Vauchan, J.: A preliminary report on the sites of deposition of Y, Am and Pu in cortical bone and in the region of the epiphyseal cartilage plate I. Bones and teeth, pp. 71–83. New York: The MacMillian Company 1964.Google Scholar
  56. Witkop, L.J., Wolf, R.O.: Hypoplasia and intrinsic staining of enamel following tetracycline therapy. J. Amer. med. Ass. 185, 1008–1011 (1963).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • Harry Foreman

There are no affiliations available

Personalised recommendations