Skip to main content
  • 105 Accesses

Abstract

Figure 52 shows a circuit for the generation of periodically repeated Walsh functions cal(i, θ) and sal(i, θ). This circuit is based on the multiplication theorem of the functions wal(j, θ) as given by Eq. (1.1.4-3).

Generator for time variable Walsh functions using products of Rademacher functions. B, binary counter stage; x, multiplier = exclusive OR-gate; z, input for trigger pulses; n, input for reset pulses.

Binary counters B 1 to B 4 produce the functions wal(1, 0) = sal (1, 0), wal(3, 0) = sal(2, 0), wal(7,0) = sal(4, 0) and wal(15, 0) = sal(8, 0). The multipliers shown in Fig. 52 produce from these Rademacher functions the complete system of Walsh functions. wal(0, 0) is a constant positive voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

2.1.1

  1. Lebert, F.J.: Walsh function generator for a million different functions.Proc. 1970 Walsh Functions Symposium, 52–54.

    Google Scholar 

  2. Peterson, H.L.: Generation of Walsh functions.Proc. 1970 Walsh Functions Symposium, 55–57.

    Google Scholar 

  3. Lee, J.S.: Generation of Walsh functions as binary group codes.Proc. 1970 Walsh Functions Symposium, 58–61.

    Google Scholar 

  4. Manoli, S.H.: Walsh function generator.Proc. IEEE 59 (1971) 93–94.

    Article  Google Scholar 

  5. Elliott, A.R.: A programmable Walsh function generator.1971 Int. Electrical, Electronics Conference and Exposition, Toronto, Digest 144–145.

    Google Scholar 

  6. Yuen, C.K.: A new Walsh function generator.Electronics Letters (in press).

    Google Scholar 

  7. Redinbo, G.R.: An implementation technique for Walsh functions.IEEE Trans. Computers C-20 (1971) 706–707.

    Article  MATH  Google Scholar 

2.1.2

  1. Wagner, K.W.: Spulen- und Kondensatorleitungen.Arch. Elektrotechn. 8 (1919) 61–92, received by the publisher on 7 January 1915.

    Article  Google Scholar 

  2. Campbell, G.A.: Physical theory of the electric wave filter.Bell System Tech.J. 1 (1922) 1–32; US-patent applied for on 15 July 1915.

    Google Scholar 

  3. Zobel, O.J.: Theory and design of uniform and composite electric wave filters.Bell System Tech.J. 2 (1923) 1–46.

    Google Scholar 

  4. Bartlett, A.C.:The theory of electrical artificial lines and filters. New York: Wiley, 1930.

    MATH  Google Scholar 

  5. Guillemin, E.A.:Communication Networks. Vol. 1: The classical theory of lumped constant networks. Vol. 2: The classical theory of long lines, filters, and related networks. New York: Wiley, 1931.

    Google Scholar 

  6. Cauer, W.:Theorie der linearen Wechselstromschaltungen. Leipzig: Akademi-sche Verlagsgesellschaft, 1941. English edition:Synthesis of linear communication networks. New York: McGraw-Hill, 1958.

    Google Scholar 

  7. Pichler, F.: Synthese linearer periodisch zeitvariabler Filter mit vorgeschrie-benem Sequenzverhalten.Arch, elektr. Übertragung 22 (1968) 150–161.

    Google Scholar 

  8. Harmuth, H.: Sequency filters based on Walsh functions.IEEE Trans. Electromagnetic Compatibility EMC-10 (1968) 293–295.

    Article  Google Scholar 

  9. Harmuth, H: Sequency filters.Proc. of the Summer School on Circuit Theory 1968, Czechoslovak Academy of Science, Prague.

    Google Scholar 

2.1.3

  1. Vandivere, E.F.: A flexible Walsh filter design for signals for moderately low sequency.Proc. 1970 Walsh Functions Symposium, 3–6.

    Google Scholar 

  2. Lee, T.: Hardware approach to Walsh function sequency filters.Proc. 1970 Walsh Functions Symposium, 7–11.

    Google Scholar 

  3. Harmuth, H.: Survey of analog sequency filters based on Walsh functions.Proc. 1970 Walsh Functions Symposium, 208–219.

    Google Scholar 

  4. Pratt, W.K.: Linear and nonlinear filtering in the Walsh domain.Proc. 1971 Walsh Functions Symposium, 38–42.

    Google Scholar 

  5. Walsh, D.M.: Walsh domain filter techniques. Thesis, Dept. Electrical Engineering, University of South Florida (1970).

    Google Scholar 

2.1.4

  • Roth, D.: Special filters based on Walsh functions.Proc. 1970 Walsh Functions Symposium, 12–16.

    Google Scholar 

  • Harmuth, H.: Grundzüge einer Filtertheorie fur die Mäanderfunktionen A n (θ). Arch, elektr. Übertragung18 (1964) 544–554. Meander functions and Walsh functions are identical: A n (θ) = wal (n, θ).

    Google Scholar 

  • Clark, B.R.: Convergence of the Walsh expansion of x 2, x3 andx 4 for − 1/2 < x < 1/2. Proc. 1971 Walsh Functions Symposium, 155–157.

    Google Scholar 

2.2.1

  1. Haard, H.B., Svala, C.G.: US Patent No. 2718621.

    Google Scholar 

  2. Harmuth, H.: Resonance filters based on Walsh functions.Proc. 1970 Kyoto Int. Conf. Circuit and System Theory, 195–198; Sequenzfilter für Signale mit zwei Raumvariablen und LCS-Filter.NTZ 23 (1970) 377–383.

    Google Scholar 

  3. Milne-Thomson, L. M.:The calculus of finite differences. London: Macmillan, 1951.

    Google Scholar 

  4. Nörlund, N. E.:Vorlesungen über Differenzenrechnung. Berlin: Springer, 1924.

    MATH  Google Scholar 

  5. Gelfond, A.O.:Differenzertrechnung. Berlin: VEB Deutscher Verlag der Wissenschaften, 1958.

    Google Scholar 

  6. Golden, J.P., James, S. N.: Implementation of Walsh function resonant filters.Proc. 1971 Walsh Functions Symposium, 106–110.

    Google Scholar 

  7. Golden, J.P., James, S. N.: LCS resonant filters for Walsh functions.Proc. IEEE Fall Electronics Conf., Chicago, 18-20 Oct. 1971, 386–390.

    Google Scholar 

2.2.3

  1. Tucker, D.G.:Circuits with periodically varying parameters. London: Mac-millan, 1964.

    Google Scholar 

  2. Manley, J.M., Rowe, H.E.: Some general properties of nonlinear elements, part 1. General energy relations.Proc. IRE 44 (1956) 904–913.

    Article  Google Scholar 

  3. Walker, J.E.: Parametric amplifier based on Walsh functions.Proc. 1970 Walsh Functions Symposium, 62–64.

    Google Scholar 

  4. Ries, R.P., Satterthwaite, C.B.: Superconducting parametric amplifier for the measurement of small voltages.Rev. Scientific Instruments 38 (1967) 1203–1209.

    Article  Google Scholar 

2.3.1

  • Harmuth, H.: Survey of analog sequency filters based on Walsh functions.Proc. 1970 Walsh Functions Symposium, 208–219.

    Google Scholar 

2.3.2

  1. Andrews, H.C., Pratt, W.K.: Digital image transform processing.Proc. 1970 Walsh Functions Symposium, 183–194.

    Google Scholar 

  2. Pratt, W.K., Kane, J., Andrews, H.C.: Hadamard transform image coding.Proc. IEEE 57 (1969) 58–68.

    Article  Google Scholar 

  3. Parkyn, W.A.: Digital image processing aspects of the Walsh transform.Proc. 1970 Walsh Functions Symposium, 152–156.

    Google Scholar 

  4. Harmuth, H.: Sequency filters based on Walsh functions for signals with two space variables.Proc. 1971 Hawaii Int. Conf. System Sciences, 414–416.

    Google Scholar 

  5. Habibi, A., Wintz, P.A.: Image coding by linear transformations and block quantization.IEEE Trans. Communication Technology COM-19 (1971) 50–62.

    Article  Google Scholar 

  6. Andrews, H.C.: Multidimensional rotations in feature selection.IEEE Trans. Computers C-20 (1971) 1045–1050.

    Article  MATH  Google Scholar 

2.3.3

  1. Boesswetter, C.: Analog sequency analysis and synthesis of voice signals.Proc. 1970 Walsh Functions Symposium, 220–229 (particulary p. 224).

    Google Scholar 

  2. Enomoto, H., Shibata, K.: Features of a Hadamard transformed television signal.Proc. 1965 National Conf. of the Institute of Electrical and Communications Engineers of Japan, paper 881, 1 page. Television signal coding method by orthogonal transformations.Proc. 1966 Joint Convention of Electrical and Electronics Engineers of Japan, paper 1436, 2 pages. Television signal coding method by orthogonal transformation.Papers of the 6th Research Group on Television Transmission, Institute of Television Engineers of Japan (1968), 24 pages. Experiment on television signal PCM system by orthogonal transformation.Proc. 1969 Joint Convention of Electrical and Electronics Engineers of Japan, paper 2219, 2 pages. Orthogonal transform coding system for television signals.Television (Journal of the Institute of Television Engineers of Japan) 24 (1970), No. 2, 99–108. All papers in Japanese.

    Google Scholar 

  3. Shibata, K., Ohira, T.: PCM CODEC for orthogonal transformed television signals (in Japanese).Proc. 1969 Joint Convention of Electrical and Electronics Engineers, paper 2619, 1 page.

    Google Scholar 

  4. Shibata, K., Ohira, T., Terauchi, S.: Color television signal orthogonal transformation PCM terminal equipment (in Japanese).Papers of the Technical Group on Communication Systems (1970), Institute of Electrical and Communications Engineers of Japan; order No. CS 70-47 (1970-07), 25 pages.

    Google Scholar 

  5. Shibata, K.: On PCM of color television signals using an orthogonal transformation (in Japanese).Proc. 1970 National Conference of the Institute of Electrical and Communications Engineers of Japan, paper S. 9–11, 2 pages.

    Google Scholar 

  6. Shibata, K.: Television signal PCM by orthogonal transformation (internal report in English) (1968). Available from KDD Research Laboratory, 1–23, 2-chome, Nekameguro, Meguro-ku, Tokyo.

    Google Scholar 

  7. Taki, Y., Hatori, M. et al.: On the band compression of television signals by the IT-sequence transformation technique (in Japanese).Papers of the Technical Group on Information Theory (1970), Institute of Electrical and Communications Engineers of Japan; order No. IT 70-13 (1970-05).

    Google Scholar 

  8. Enomoto, H., Shibata, K.: Orthogonal transform coding system for television signals.Proc. 1971 Walsh Functions Symposium, 11–17.

    Google Scholar 

  9. Skolnik, M.I.:Radar handbook. New York: McGraw-Hill, 1970, p. 11–66.

    Google Scholar 

2.4.1

  • Skolnik, M. I.:Radar handbook. New York: McGraw-Hill, 1970, p. 11–66.

    Google Scholar 

2.4.3

  1. Oppenheim, A.V., Schafer, R.W., Stockham, T.G.: Nonlinear filtering of multiplied and convolved signals.Proc. IEEE 56 (1968) 1264–1291.

    Article  Google Scholar 

  2. Boyle, W.S., Smith, G.E.: Charge coupled devices — A new approach to MIS device structure.IEEE Spectrum 8, No. 7 (July 1971) 18–27.

    Article  Google Scholar 

2.5.1

  • Nowak, D.J., Schmid, P.E.: Introduction to digital filters.IEEE Trans. Electromagnetic Compatibility EMC-10 (1968) 210–220.

    Article  Google Scholar 

  • Robinson, G.S., Granger, R.L.: A design procedure for nonrecursive digital filters based on Walsh functions.Proc. 1971 Walsh Functions Symposium, 95–100.

    Google Scholar 

  • Murray, G.G.: Digital Walsh filter design.Proc. 1971 Walsh Functions Symposium, 101–105.

    Google Scholar 

  • Walsh, D.M.: Design considerations for digital Walsh filters.Proc. IEEE Fall Electronics Conf., Chicago, 18—20 Oct. 1971, 372–377.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Harmuth, H.F. (1972). Sequency Filters for Time and Space Signals. In: Transmission of Information by Orthogonal Functions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61974-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61974-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-61976-2

  • Online ISBN: 978-3-642-61974-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics