Number Theory

  • George Pólya
  • Gabor Szegö
Part of the Classics in Mathematics book series


Letx be a real number. Denote by [x] the integral part of x, i.e. the integer that satisfies the inequalities
$$ \left[ {\text{x}} \right] \underline \leqslant {\text{x}} < \left[ {\text{x}} \right] + {1} $$
We have for example
$$ \left[ \pi \right] = {3},\left[ {2} \right]{ } = {2},\left[ { - 0.{73}} \right] = - {1} $$


Power Series Lattice Point Prime Number Rational Coefficient Prime Divisor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • George Pólya
    • 1
  • Gabor Szegö
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations