Skip to main content

Abstract

As is well known, the eigen-vibrations of a cubical cavity, with edge l and volume V=l3 whose walls are perfect reflectors, have the following properties: The components k i of the wave vector whose magnitudes amount to 2π divided by the wave-length, have the eigenvalues

$$k_t = 2\pi \frac{{s_t }} {{2l}},\,\,\,\,s_1 ,s_2 ,s_3 = 1,2,3,...$$

where the integers s i are to be restricted to positive numbers, since we are dealing with standing waves. The number dN of eigen-vibrations with wave vector components k i lying between k i and k i + dk i is then given by

$$dN = V \cdot 2 \cdot 8 \cdot \frac{1} {{\left( {2\pi } \right)^3 }}\,\,dk_1 \,dk_2 \,dk_3 ,$$

where the factor 2 takes care of the two polarisation directions of the wave, while the factor 8 arises because for standing waves we have to restrict ourselves to the positive octant of the k-space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Cf. C.G. Darwin, Proc. Roy. Soc. London (A), 136, 36 (1932).

    Article  ADS  Google Scholar 

  2. These relations can be found in a somewhat different form (four-dimension) in P. Jordan and W. Pauli, Z. Phys. 47, 151 (1927) and in the form given here in W. Heisenberg and W. Pauli, ibid., 56, 1 (1927).

    Article  ADS  Google Scholar 

  3. Cf. L. Landau and R. Peierls, Z. Phys. 62, 188 (1930).

    Article  ADS  Google Scholar 

  4. A discussion on the introduction of the quantities F and F * for avoiding the zero-point energy can be found in L. Rosenfeld and J. Solomon, Journ. de Phys. Series 7, 2, 139 (1931) and also in J. Solomon, Doctoral Thesis, Paris (1931). The C.R. between i F and F* given in these references arc, incorrect, since they are not compatible with the conditions, div \(\vec F = 0\) and div \(\vec F* = 0\).

    Google Scholar 

  5. Cf. L. Landau and R. Peierls, Z. Phys. 69, 56 (1931) in particular, Secs. 3 and 4; W. Heisenberg, The Physical Principles of Quantum Theory, loc. cit., Chapter 3, Sec. 2.

    Article  ADS  Google Scholar 

  6. L. Landau and R. Peierls, Z. Phys., 62, 188 (1930)

    Article  ADS  Google Scholar 

  7. cf. also J.R. Oppenheimer, Phys. Rev., 38, 725 (1931).

    Article  ADS  Google Scholar 

  8. Reviews: L. Rosenfeld, Mém. de l’Inst. Henri Poincaré, 2, 24 (1932)

    Google Scholar 

  9. E. Fermi, Rev. Mod. Phys. 1, 87 (1932).

    Article  ADS  Google Scholar 

  10. Original Papers; G. Mie, Ann. d. Phys. (4) 85, 711 (1928)

    Article  ADS  Google Scholar 

  11. W. Heisenberg and W. Pauli, I, Z. Phys. 56, 1 (1929); II, ibid, 59, 168 (1929). (Remarks on these: L. Rosenfeld, ibid., 58, 540 (1929) and 63, 574 (1930)

    Article  ADS  Google Scholar 

  12. E. Fermi, Lincei Rend. (6), 9, 881 (1929), 12, 431 (1930)

    Google Scholar 

  13. L. Rosenfeld, Ann. d. Phys., 5, 113 (1930).)

    Article  ADS  Google Scholar 

  14. P.A.M. Dirac, Proc. Roy. Soc. London, 114, 243, 710 (1927). Dirac employed standing waves and not progressive waves for quantising the radiation. Secondly, at that time his theory of the electron had not appeared and, therefore, he used in the Hamiltonian for each particle the non-relativistic operator \(\left( {1/2m} \right)\sum {\pi _j^2 }\) instead of \(c\left( {\sum {\alpha _j \pi _j + mc\beta } } \right)\). This is approximately correct for small velocities of particles. The fact that the equations (26.23) and (26.24) follow from quantum electrodynamics was shown by

    Article  ADS  Google Scholar 

  15. J.R. Oppenheimer, Phys. Rev., 35, 461 (1930) and

    Article  ADS  Google Scholar 

  16. E. Fermi, Lincei Rend., 12, 431 (1930).

    Google Scholar 

  17. L. Landau and R. Peierls, Z. Phys. 62, 188 (1930).

    Article  ADS  Google Scholar 

  18. W. Heisenberg, Ann. d. Phys. (5), 9, 338 (1931). In contrast to Heisenberg’s approach, we do not use here the method of quantisation of matter waves. The interaction between the electrons of the atom can then be arbitrary.

    Article  ADS  Google Scholar 

  19. I thank Prof. R. Peierls for these remarks. For the case of the self-energy of an oscillator, cf., also L. Rosenfeld, Z. Phys., 70, 454 (1931).

    Article  ADS  Google Scholar 

  20. I. Waller, Z. Phys., 62, 673 (1930).

    Article  ADS  Google Scholar 

  21. J.R. Oppenheimer, Phys. Rev., 35, 461 (1930).

    Article  ADS  Google Scholar 

  22. Cf. M. Born and G. Rumer, Z. Phys., 69, 141 (1931).

    Article  ADS  Google Scholar 

  23. Approximate ansatz for these have been presented in G. Breit, Phys. Rev., 34, 553 (1929); 36, 383 (1930) (magnetic interaction, but without retardation). See H. Bethe and E. Salpeter, Quantum Mechanics of One-and Two-electron problem, loc. cit. and

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Moller, Z. Phys., 70. 786 (1931) (Collisions with weak interaction, treated as retarded), also Ann. d. Phys., 14, 531 (1932). See further G. Wentzel, Wave Mechanics of Collision and Radiation Processes, loc. cit.

    Article  ADS  Google Scholar 

  25. Cf. also A.D. Fokker, Physica, 12, 145 (1932) and Z. Phys., 58, 386 (1929), where a two-body problem with partly retarded and partly advanced potentials is treated. For this problem, no radiation is emitted classically.

    Google Scholar 

  26. L. Rosenfeld, Z. Phys., 65, 589 (1930).

    Article  ADS  Google Scholar 

  27. J. Solomon, Z. Phys., 71, 162 (1931).

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pauli, W. (1980). Quantum Electrodynamics. In: General Principles of Quantum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61840-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61840-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09842-3

  • Online ISBN: 978-3-642-61840-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics