Skip to main content

Thermochemical Properties of Phosphates

  • Chapter
Phosphate Minerals

Abstract

This chapter summarizes the thermochemical data of phosphate ions, aqueous complex species as well as minerals occurring in natural environments. The data are presented in such a way as to express all equilibrium reactions as a function of a set of reference aqueous ions. The sources of these data were selected, as far as possible, according to their internal consistency and the newness of the corresponding experimental works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afanas’ev YA, Starotin AD (1967) Standard enthalpies of formation for orthophosphates of some rare earths. Izv Sib Otd Akad Nauk SSSR Ser Khim Nauk 12:104–106 (in russian)

    Google Scholar 

  • Aia MA, Mathers JE, Mooney RW (1964) Thermodynamic solubility products of a and ft SrHP04 from 25° to 90°. J Chem Eng Data 9:335–338

    Google Scholar 

  • Aleksandrov Yal (1979) Nature of the adhesion of a galvanic deposit to aluminum through an anoxic oxide. Sov Electrochem 15:141–144

    Google Scholar 

  • Aleshchkina AE, Masalovich VM, Agasyan PK, Sereda BP (1976) Chromium (III) phosphate-complexes. Russ J Inorg Chem 21:973–975

    Google Scholar 

  • Allulli S, Massucci A, Tomassini N (1979) The standard enthalpy of formation of anhydrous monohy- drated and dihydrated zirconium bis (mono-hydrogen phosphate). J Chem Thermod 11:613–618

    Google Scholar 

  • Andon JL, Counsell JF, Mc Kerrell H, Martin JF (1963) Thermodynamic properties of phosphorus compounds. I. Entropy of phosphorus pentoxide. Trans Farad Soc 59:2702–2705

    Google Scholar 

  • Andon JL, Counsell JF, Martin JF, Mash CJ (1967) Thermodynamic properties of hosphorus compounds. II. Low temperature, heat capacity and entropy of sodium mono-, di- and triphosphates. JAppl Chem 17:65–70

    Google Scholar 

  • Ashcroft SJ, Keen E, Mortimer CT (1969) Thermochemistry of formation of sodium polyphosphate from sodium orthophosphates. Trans Farad Soc 65:2851–2855

    Google Scholar 

  • Ashuiko VA, Lavrov AV, Rat’kovskii IA (1975) Mass spectrometric study of gallium and indium phosphates. Zh Fiz Khim 49:1958 (in russian)

    Google Scholar 

  • Avnimelech Y, Moreno EC, Brown WE (1973) Solubility and surface properties of finely divided hy-droxyapatite. J Res NBS 77A: 149–155

    Google Scholar 

  • Baker WE (1964) Mineral equilibrium studies of the pseudomorphism of pyromorphite by hindsalite. Am Miner 49:607–613

    Google Scholar 

  • Baldwin WG (1969) Phosphate equilibria. II. Studies on the silver phosphate electrodes. Arkiv Kemi 31:407–414

    Google Scholar 

  • Ball JW, Nordstrom DK, Everett AJ (1980) Additional and revised thermochemical data and computer code for WATEQ 2. A computerized chemical model for trace and major element speciation and mineral equilibria of natural waters. US Geol Surv Wat Res Invest 78–116

    Google Scholar 

  • Barner HE, Scheuerman RV (1978) Handbook of thermochemical data for compound and aqueous species. Wiley, New York, p 156

    Google Scholar 

  • Bass JD, Sclar CB (1979) The stability of trolleite and the A1203-A1P04-H20 phase diagram. Am Miner 64:1175–1183

    Google Scholar 

  • Bobrownicki W, Jarmakowicz J (1966) Energy balance of thomas superphosphate production. Estimation of enthalpy of formation of sodium calcium phosphate. Chem Stosow Ser A 10:365–367

    Google Scholar 

  • Borisov MS, Elesin AA, Lebedev IA, Filomonov VT, Yakovlev GN (1966) Complex formation of the trivalent actinides and lanthanides in phosphoric acid solutions. Radiokhim 8:42–48 (in russian)

    Google Scholar 

  • Bousquet J, Diot M, Tranquard A, Coffy G, Vignalou JR (1978) Heat capacities of dihydrogen and dideuterium thallium orthophosphates. Thermodynamic properties of solid phase transitions. J Chem Thermod 10:779–786

    Google Scholar 

  • Brodsky A (1929) Electrochemistry of the mercurous ion. Z Elektrochem 35:833–837

    Google Scholar 

  • Brown WE (1960) Behaviour of slightly soluble calcium phosphates as revealed by phase equilibrium calculation. Soil Sci 90:51–57

    Google Scholar 

  • Chang SC, Jackson ML (1957) Solubility product of iron phosphate. Soil Sci Soc Am Proc 21:265–269

    Google Scholar 

  • Chien SH, Black CA (1976) Free energies of formation of carbonate apatite in some phosphate rocks. Soil Sci Soc Am Proc 40:234–239

    Google Scholar 

  • Chughtai A, Marshall R, Nancollas GH (1968) Complexes in calcium phosphate solutions. J Phys Chem 72:208–211

    Google Scholar 

  • Chukhlantsev VG, Stepanov SI (1956) Solubility of uranyl and thorium phosphates. Zh Neorg Khim 1:478–484 (in russian)

    Google Scholar 

  • Chukhlantsev VG, Alyamovskaya KV (1961a) Solubility product of uranyl, beryllium, and cerium phosphates. Izvest Vyss Uch Zaved Khim Khim Tekh 4:359–363 (in russian)

    Google Scholar 

  • Chukhlantsev VG, Alyamovskaya KV (1961b) Solubility product of copper, cobalt, nickel, and cadmium phosphates. Izvest Vyss Uch Zaved Khim Khim Tekh 4:706–709 (in russian)

    Google Scholar 

  • Coffy G, Sunner S (1980) Heat capacity and thermodynamic properties of trithallium phosphate from 5° to 320 °K. J Chem Termodyn 12:303–304

    Google Scholar 

  • Cordfunke EHP, Ouweltjes W (1971) Heats of formation of silver phosphate and silver arsenate. A re- evalution. Rec Trav Chim Pays-Bas 90:1343–1344

    Google Scholar 

  • Denotkina RG, Moskvin AI, Shevchenko VB (1960) The solubility product of plutonium. IV. Hydrogen phosphate and its solubility in various acids. Zh Neorg Khim 5:805–810 (in russian)

    Google Scholar 

  • De Vries T, Cohen D (1949) Standard potential of the mercury-mercury I phosphate electrode. J Am Chem Soc 71:1114–1115

    Google Scholar 

  • Dongarra G, Langmuir D (1980) The stability of U020H+ and U02(HP04)~ complexes at 25 °C. Geochim Cosmochim Acta 44:1747–1751

    Google Scholar 

  • Duff EJ (1971a) Orthophosphates. II. The transformation Brushite-*Fluorapatite and Monetite-» Fluorapatite in aqueous potassium fluoride solution. J Chem Soc A:33–38

    Google Scholar 

  • Duff EJ (1971b) Orthophosphates. III. The hydrolysis of secondary calcium orthophosphates. J Chem Soc A: 917–921

    Google Scholar 

  • Duff EJ (1971c) Orthophosphates. IV. Stability relationships of orthophosphates within the system Ca0-P205-H20 and CaF2-Ca0-P205-H20 under aqueous conditions. J Chem Soc A:921–926

    Google Scholar 

  • Duff EJ (1971d) Orthophosphates. VIII. The transformation of Newberyite into Biobierrite in aqueous alkaline solutions. J Chem Soc A:2736–2740

    Google Scholar 

  • Duff EJ (1972a) Orthophosphates. VII. Thermodynamical considerations concerning the stability of oxyapatite Ca10O(PO4)6 in aqueous media. J Inorg Nucl Chem 34:853–857

    Google Scholar 

  • Duff EJ (1972b) Orthophosphates. IX. Chlorapatite: Phase relationships under aqueous conditions along Ca5F(P04)3-Ca5Cl(P04)3 and Ca5(0H)(P04)3-Ca5Cl(P04)3 joins of the system CaO- CaCl2-CaF2-P205-H20. J Inorg Nucl Chem 34:859–871

    Google Scholar 

  • Duff EJ (1972c) Orthophosphates. XI. Bromoapatite: Stability of solid solutions of bromoapatite with other calcium apatites under aqueous conditions. J Inorg Nucl Chem 34:101–108

    Google Scholar 

  • Egan EP, Luff BB (1963) Heat of formation of phosphorous oxides. Teness Valley Auth, p 44 Egan EP, Wakefield ZT (1963) Low temperature, heat capacity and entropy of the potassium, iron, phosphate H8KFe3(P04)6 • 6H20. J Chem Engl Data 8:182–184

    Google Scholar 

  • Egan EP, Wakefield ZT (1964a) Low temperature, heat capacity and entropy of anhydrous dicalcium phosphate 10° to 310 °K. J Chem Engl Data 4:541–544

    Google Scholar 

  • Egan EP, Wakefield ZT (1964b) Low temperature, heat capacity and entropy of dicalcium phosphate dihydrate 10° to 310 °K. J Chem Engl Data 9:544–545

    Google Scholar 

  • Egan EP, Wakefield ZT (1966) Low temperature, heat capacity and entropy of variscite, A1P04 • 2H20, 10° to 310 °K. J Chem Engl Data 11:610–611

    Google Scholar 

  • Egan EP, Wakefield ZT, Luff BB (1961) Thermodynamic properties of potassium and ammonium taranakites. J Phys Chem 65:1609–1612

    Google Scholar 

  • Egan EP, Wakefield ZT, Luff BB (1963) Low temperature, heat capacity and entropy of basic potassium aluminium phosphate. J Chem Engl Data 8:184–185

    Google Scholar 

  • Fritz B (1976) Etude thermodynamique des réactions entre minéraux et solutions. Applications à la géochimie des altérations et des eaux continentales. Mem Sci Géol 41:pl 52

    Google Scholar 

  • Fuger J, Oetting FL (1976) The chemical thermodynamic of actinide elements and compounds. II. The actinide aqueousions. Int Atom Energ Agency Vienna, pp 16–60

    Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Harper & Row, New York, pp 403–428

    Google Scholar 

  • Gregory TM, Moreno EC, Brown WE (1970) Solubility of CaHP042H20 in the system Ca(OH)2- H3P04-H20 at 5,15,25, and 37 °C. J Res NBS 74A:461–475

    Google Scholar 

  • Gregory TM, Moreno EC, Patel JM, Brown WE (1974) Solubility of 0 Ca3(P04)2 in the system Ca(OH)2-H3P04-H20 at 5,15,25, and 37 °C. J Res NBS 78A:667–674

    Google Scholar 

  • Guido M, Balducci G, De Maria G, Gigli G (1977) Thermodynamic study of the vaporization of cerium orthophosphate. J Chem Soc Farad Trans 173:121–127

    Google Scholar 

  • Jowett M, Price HI (1932) Solubilities of the phosphates of lead. Trans Farad Soc 28:568–581

    Google Scholar 

  • Jurinak JJ, Inouye TS (1962) Some aspects of zinc and copper phosphate formation in aqueous systems. Soil Sci Soc Am Proc 26:144–147

    Google Scholar 

  • Irving RJ, Me Kerrell H (1967) Standard heats of formation of sodium dihydrogen phosphate, disodi- um monohydrogen phosphate and trisodium phosphate. Trans Farad Soc 63:2913–2916

    Google Scholar 

  • Karpov VI (1961) The solubility of tri-uranyl phosphate. Zh Neorg Khim 6:531–533 (in russian)

    Google Scholar 

  • Kelley KK (1960) High temperature, heat content, heat capacity and entropy data for the elements and inorganic compounds. Bur Mines Bull 584:232

    Google Scholar 

  • Kharaka YK (1973) SOLMNEQ: Solution-mineral equilibrium computation. US Geol Surv comput contr, p 81

    Google Scholar 

  • Kielland J (1937) Individual activity coefficients of ions in aqueous solutions. J Am Chem Soc 59:1675–1678

    Google Scholar 

  • Klygin AE, Zavrazhnova DM, Nikol’skaya NA (1961) Isolation of uranium as ammonium uranyl phosphate and its gravimetric determination by calcination to U203P207. Zh Anal Khim 16:297–302 (in russian)

    Google Scholar 

  • Lahiri SC (1965) Ferric-phosphoric acid system. J Ind Chem Soc 42:715–724

    Google Scholar 

  • Langmuir O (1978) Uranium solutions-mineral equilibria at low temperatures with application to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–569

    Google Scholar 

  • Lindsay WL, Moreno EC (1960) Phosphate phase equilibria in soils. Soil Sci Am Proc 24:177–182

    Google Scholar 

  • Lindsay WL, Peech M, Clark JS (1959) Solubility criteria for the existence of variscite in soils. Soil Sci Soc Am Proc 23:357–360

    Google Scholar 

  • Luff BB, Reed RB (1978a) Low temperature, heat capacity and entropy of dipotassium orthophosphate. J Chem Engl Data 23:58–60

    Google Scholar 

  • Luff BB, Reed RB (1978b) Standard enthalpies of monopotassium and dipotassium orthophosphate. J Chem Engl Data 23:60–62

    Google Scholar 

  • Luff BB, Reed RB (1980) Thermodynamic properties of magnesium potassium orthophosphate hexa- hydrate. J Chem Engl Data 25:310–312

    Google Scholar 

  • Luff BB, Reed RB, Nash RH (1976) Low temperature heat capacity and entropy of diammonium orthophosphate. J Chem Engl Data 21:418–419

    Google Scholar 

  • Mac Cann HG (1968) The solubility of fluorapatite and its relationships to that of calcium fluoride. Arch Oral Biol 13:987–1001

    Google Scholar 

  • Mac Dowell H, Brown WE, Sutter JR (1971) Solubility study of calcium hydrogen phosphate ion pair formation. InorgChem 10:1638–1643

    Google Scholar 

  • Maier CG, Kelley KK (1932) An equation for the representation of high temperature heat content data. J Am Chem Soc 54:3243–3246

    Google Scholar 

  • Marcus V (1958) Anion exchange of metal complexes: The uranyl phosphate system. Proc 2nd UN Inter Conf PeacUses Atom Energy 3:465–471

    Google Scholar 

  • Marinova LA, Rud’ko PK (1975) Thermodynamic study of praseodymium phosphate. Khim Khim Tekhnol (Minsk) 9:42–50 (in russian)

    Google Scholar 

  • Marinova LA, Yaglov VN (1976) Thermodynamic characteristics of lanthanide phosphates. Zh Fiz Khim 50:802–803 (in russian)

    Google Scholar 

  • Mayer SW, Schwartz SD (1950) The association of cerous ion with sulfite, phosphate and pyrophosphate ions. J Am Chem Soc 72:5106–5110

    Google Scholar 

  • Mills KC (1974) Thermodynamic data for inorganic sulfides, selenides, and tellurides. Butterworths, London, p 845

    Google Scholar 

  • Moreno EC; Brown WE, Osborn G (1960a) Solubility of dicalcium phosphate dihydrate in aqueous system. Soil Sci Soc Am Proc 24:94–98

    Google Scholar 

  • Moreno EC, Brown WE, Osborn G (1960b) Stability of dicalcium phosphate dihydrate in aqueous solutions and solubility of octacalcium phosphate. Soil Sci Soc Am Proc 24:99–102

    Google Scholar 

  • Moskvin Al, Shelyakina AM, Perminov PS (1967) Solubility product of uranyl phosphate and the composition and dissociation constants of uranyl phosphato complexes. Russ J Inorg Chem 12:1756–1760

    Google Scholar 

  • Muto T (1965) Thermochemical study of ningyoite. Miner J 4:245–274

    Google Scholar 

  • Naumov GB, Ryzenko B, Khodakovsky IL (1971) Handbook of thermochemical data. Moscou Atomizdat, p 239 (in russian)

    Google Scholar 

  • Nriagu JO (1972a) Lead orthophosphates. I. Solubility and hydrolysis of secondary lead orthorphos-phate. Inorg Chem 11:2499–2503

    Google Scholar 

  • Nriagu JO (1972b) Stability of vivianite and ion-pair formation in the system Fe3(P04)2-H3P04-H20. Geochim Cosmochim Acta 36:459–470

    Google Scholar 

  • Nriagu JO (1972c) Solubility equilibrium constant of strengite. Am J Sci 272:476–484

    Google Scholar 

  • Nriagu JO (1973a) Lead orthophosphate. II. Stability of chloropyromorphite at 25 °C. Geochim Cosmochim Acta 37:367–377

    Google Scholar 

  • Nriagu JO (1973b) Solubility equilibrium constant of a-hopeite. Geochim Cosmochim Acta 37:2357–2361

    Google Scholar 

  • Nriagu JO (1976) Phosphate-clay mineral relations in soils and sediments. Can J Earth Sci 13:717–736

    Google Scholar 

  • Oetting FL, Mac Donald RA (1963) The thermodynamic properties of magnesium orthophosphate and magnesium pyrophosphate. J Phys Chem 63:2737–2743

    Google Scholar 

  • Ousubaliev D, Batkibekova M, Yousoupov V, Kydynov MK (1975) Thermochemical properties of phosphates and iodates of rare earth elements. 4th Conf Int Thermodyn Chem 1:217–223

    Google Scholar 

  • Parker VB, Wagman DD, Evans WH (1971) Selected values of chemical thermodynamic properties. Natl Bur Stand Tech Note 270–6:119

    Google Scholar 

  • Patel PR, Brown WE (1975) Thermodynamic solubility product of human tooth enamel: Powdered sample. J Dent Res 54:728–736

    Google Scholar 

  • Patel PR, Gregory TM, Brown WE (1974) Solubility of CaHP04-2H20 in the quaternary system Ca(0H)2-H3P04-NaCl-H20 at 25 °C. J Res Nat Bur Stand 78A:675–681

    Google Scholar 

  • Racz GJ, Soper RJ (1968) Solubility of dimagnesium phosphate trihydrate and trimagnesium phosphate. Can J Soil Sci 48:265–269

    Google Scholar 

  • Rosenquist IT (1970) Formation of vivianite in Holocene clay sediments. Lithos 3:327–334

    Google Scholar 

  • Rud’ko PK, Yaglov VN, Novikov GI (1972) Thermodynamics of the dehydration of lithium dihydrogen orthophosphate. Zh Fiz Khim 46:545 (in russian)

    Google Scholar 

  • Rud’ko PK, Yaglov VN, Novikov GI (1973) Calorimetric study of rubidium dihydrogen orthophosphate. Vestsi Akad Navuk Belarus SSR Ser Khim Navuk 6:111–112 (in russian)

    Google Scholar 

  • Schumm RH, Wagman DD, Bailey S, Evans WH, Parker VB (1973) Selected values of chemical thermodynamic properties. Natl Bur Stand Tech Note 270–7:76

    Google Scholar 

  • Sillen LG, Martell AE (1971) Stability constants of metal ion complexes. Chem Soc Spec Publ [Suppl 1] 25:865

    Google Scholar 

  • Singer PC (1972) Anaerobic control of phosphate by ferrous iron. J Water Poll Cont Fed 44:663–669

    Google Scholar 

  • Smith RM, Martell AE (1976) Critical stability constants, vol 4: Inorganic complexes. Plenum NY, p 257

    Google Scholar 

  • Spitsyn VI, Mikheev HB, Khermann A (1966) Thermodynamic study of the distribution of micro quantities of strontium between barium hydrogen phosphate and a solution. Dokl Akad Nauk SSSR 166:658–659 (in russian)

    Google Scholar 

  • Stull DR, Prophet H (1971) JANAF thermochemical tables. Natl Stand Ref Data Ser Natl Bur Stand 37:1141

    Google Scholar 

  • Taylor AW, Gurney EL (1961) Solubility of potassium taranakite and ammonium taranakite. J Phys Chem 65:1615–1617

    Google Scholar 

  • Taylor AW, Gurney EL (1964a) The dissolution of calcium aluminum phosphate CaAlH(P04)2-6H20. Soil Sci Soc Am Proc 28:63–64

    Google Scholar 

  • Taylor AW, Gurney EL (1964b) The dissolution of basic potassium and ammonium aluminum phosphates. Soil Sci Soc Am Proc 28:288–290

    Google Scholar 

  • Taylor AW, Frazier AW, Gurney EL (1963a) Solubility products of magnesium ammonium and magnesium potassium phosphates. Trans Farad Soc 59:1580–1584

    Google Scholar 

  • Taylor AW, Frazier AW, Gurney EL, Smith JP (1963b) Solubility product of di- and tri-magnesium phosphates and the dissociation of magnesium phosphate solutions. Trans Farad Soc 59:1585–1589

    Google Scholar 

  • Truesdell AH, Jones BF (1964) WATEQ, a computer program for calculating chemical equilibria of natural waters. J Res US Geol Surv 2:233–248

    Google Scholar 

  • Tsagareishvili DS, Gvelesiani GG, Orlovskii VP, Belyaevskaya TK, Rep’ko VP (1972) Enthalpies and specific heats of lanthanum, neodymium, and yttrium orthophosphate at high temperature. Izv Akad Nauk SSSR Neorg Mater 8:1790–1793 (in russian)

    Google Scholar 

  • Tsagareishvili DS, Gvelesiani GG, Orlovskii VP, Belyaevskaya TV (1975) Enthalpy and heat capacity of scandium and europium orthophosphates at high temperatures. Izv Akad Nauk SSSR Neorg Mater 11:491–493 (in russian)

    Google Scholar 

  • Turekian KK (1969) The oceans, streams and atmosphere. In: Wedepohl KH (ed) Handbook of Geochemistry. Springer, Berlin Heidelberg New York, p 297–323

    Google Scholar 

  • Valyashko VM, Kogarko LN, Khodakovsky IL (1968) Stability of fluorapatite, chlorapatite, and hy-droxylapatite in aqueous solutions at different temperature. Geoch Inter 5:21–30

    Google Scholar 

  • Vieillard P (1978) Géochimie des phosphates. Etude thermodynamique. Application à la genèse et àl’altération des apatites. Mem Sci Géol 51:181

    Google Scholar 

  • Vieillard P, Tardy Y, Nahon D (1979) Stability field of clays and aluminum phosphates: Parageneses in lateritic weathering of argillaceous phosphatic sediments. Am Miner 64:626–634

    Google Scholar 

  • Vochten R, Piret P, Goeminne A (1981) Synthesis, crystallographic data, solubility and electrokinetic properties of copper, nickel, and cobalt uranylphosphate. Bull Miner 104:457–167

    Google Scholar 

  • Volkov AI (1979) Thermochemical study of 3d element orthophosphates. Khim Khim Tekhnol (Minsk) 14:58–64 (in russian)

    Google Scholar 

  • Volkov AI, Yaglov VN, Novikov GI (1974a) Heat of formation of trizinc diorthophosphate. Russ J Phys Chem 48:1697

    Google Scholar 

  • Volkov AI, Yaglov VN, Novikov GI (1974b) Heat of formation of vanadyl phosphate and its hydrate. Russ J Phys Chem 48:1701

    Google Scholar 

  • Volkov AI, Yaglov VN, Fakeev AA, Novikov GI (1975a) Thermodynamic study of iron III tris (dihy-drogen) orthophosphate monohydrate. Khim Khim Tekhnol (Minsk) 9:29–35 (in russian)

    Google Scholar 

  • Volkov AI, Yaglov VN, Glybin VP, Marinova LA (1975b) Determination of the standard heats of formation of scandium phosphates. Khim Khim Tekhnol (Minsk) 9:35–41 (in russian)

    Google Scholar 

  • Volkov AI, Yaglov VN, Novikov GI (1976) Heat of formation of chromium orthophosphate hexahy-drate. Vestsi Akad Navuk B SSR Ser Khim Navuk 120–121 (in russian)

    Google Scholar 

  • Wagman DD, Evans WH, Parker VB, Halow I, Bailey SM, Schumm RH (1968) Selected values of chemical thermodynamic properties. Natl Bur Stand Tech Note 270–3:264

    Google Scholar 

  • Wagman DD, Evans WH, Parker VB, Halow I, Bailey SM, Schumm RH (1969) Selected values of chemical thermodynamic properties. Natl Bur Stand Tech Note 270–4:152

    Google Scholar 

  • Wagman DD, Evans WH, Parker VB, Halow I, Bailey SM, Schumm RH, Churney KL (1971) Selected values of chemical thermodynamic properties. Natl. Bur Stand Techn Note 270–5:49

    Google Scholar 

  • Wagman DD, Evans WH, Parker VB, Schumm RH (1976) Chemical thermodynamic properties of compounds of sodium, potassium, and rubidium, an interim tabulation of selected values. Natl Bur Stand Techn Note 270:73

    Google Scholar 

  • Waterfield CG, Staveley LAK (1967) Thermodynamic investigation of disorder in the hydrates of di-sodium hydrogen phosphate. Trans Farad Soc 63:2349–2356

    Google Scholar 

  • Webber MD, Racz G J (1970) Soluble complexes in the systems dicalcium phosphate dihydrate or di- magnesium phosphate trihydrate equilibrated with aqueous salt solutions. Can J Soil Sci 50:243–253

    Google Scholar 

  • Wise WS, Loh SE (1976) Equilibria and origin of minerals in the system A1203-A1P04-H20. Am Miner 61:409–413

    Google Scholar 

  • Yaglov VN (1978) Some characteristics of dehydration of hydrates of 3d elements orthophosphates. Khim Khim Tekhnol (Minsk) 13:7–14 (in russian)

    Google Scholar 

  • Yaglov VN, Marinova LA, Novikov Gl (1974) Thermodynamic features of the dehydration of cobalt and nickel phosphate crystal hydrates. Dokl Akad Nauk B SSR 18:624–627 (in russian)

    Google Scholar 

  • Yaglov VN, Rud’ko PK, Bondar LA, Gerassimenko SV (1976) Thermodynamic characteristics of the crystal hydrates and anhydrous terbium phosphates. Khim Khim Tekhnol (Minsk) 11:13–19 (in russian)

    Google Scholar 

  • Zharovskii FG (1951) The solubility of phosphates. Trudy Kom Anal Khim Akad Nauk SSSR 3:101- 115 (in russian)

    Google Scholar 

  • Zolotavin VL, Kuznetsova VK (1956) Determination of the solubility product for vanadyl phosphate. Russ J Inorg Chem 1:2257–2259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vieillard, P., Tardy, Y. (1984). Thermochemical Properties of Phosphates. In: Nriagu, J.O., Moore, P.B. (eds) Phosphate Minerals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61736-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61736-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-61738-6

  • Online ISBN: 978-3-642-61736-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics