Skip to main content

Remarks on a Question of Ericksen Concerning Elastostatic Fields of Saint-Venant Type

  • Conference paper
  • 364 Accesses

Abstract

In an effort to understand better the relationship between approximate theories —such as those for thin rods—and the three-dimensional theory of elasticity, Ericksen [l]–[3] has recently suggested a reconsideration of Saint-Venant’s problem for elastic cylinders with traction-free lateral surfaces. Among the various questions raised in [l]–[3], one concerns the structure and role of the set of all possible elastostatic fields in an infinitely long cylinder in the absence of lateral loading and body force, but in the presence of a restriction on the size of a suitable cross-sectional norm of the associated strain tensor field.

Keywords

  • Plane Strain
  • Resultant Force
  • Airy Function
  • Linear Manifold
  • Elastic Cylinder

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-61634-1_35
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-61634-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Ericksen, Special topics in elastostatics, in Advances in Applied Mechanics, edited by C.-S. YIH, vol. 17, pp. 189–244, Academic Press, New York, 1977.

    CrossRef  Google Scholar 

  2. J. L. Ericksen, On the formulation of Saint-Venant’s problem, in Nonlinear Analysis and Mechanics: Heriot- Watt Symposium, edited by R. J. KNOPS, vol. 1, pp. 158–186, Pitman, London, 1977.

    Google Scholar 

  3. J. L. Ericksen, Lecture 2: Problems for infinite elastic prisms; Lecture 3: Saint- Venant’s problem for elastic prisms, in Systems of Nonlinear Partial Differential Equations edited by J. M. BALL, Proceedings, NATO Advanced Study Institute, Oxford, 1982, pp. 81–93. Reidel Publishing Co., Dordrecht, Holland, 1983.

    Google Scholar 

  4. S. P. Timoshenko & J. N. Goodier, Theory of Elasticity, third edition, McGraw- Hill, New York, 1980.

    Google Scholar 

  5. R. T. Shield & C. A. Anderson, Some least work principles for elastic bodies, Z. Angew. Math. Fhys. 17 (1966), pp. 663–676.

    CrossRef  Google Scholar 

  6. E. Sternberg & J. K. Knowles, Minimum energy characterizations of Saint-Venant’s solution to the relaxed Saint-Venant problem. Arch. Rational Mech. and Anal 21 (1966), pp. 89–107.

    MathSciNet  ADS  Google Scholar 

  7. O. Maisonneuve, Sur le principe de Saint-Venant, Thèse, Université de Poitiers, 1971.

    Google Scholar 

  8. J. L. Ericksen, On the status of Saint-Venant’s solutions as minimizers of energy, Int. J. Solids and Structures, 16 (1980), pp. 195–198.

    MathSciNet  MATH  CrossRef  Google Scholar 

  9. G. H. Hardy, J. E. Littlewood & G. Pölya, Inequalities, second edition, Cambridge University Press, Cambridge, 1967.

    Google Scholar 

  10. R. D. Gregory, The traction boundary-value problem for the elastostatic semi-in-finite strip; existence of solution and completeness of the Papkovich-Fadle eigenfunctions, J. Elasticity 10 (1980), pp. 295–327.

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. J. K. Knowles, On Saint-Venant’s principle in the two-dimensional linear theory of elasticity, Arch. Rational Mech. Aftal21 (1966), pp. 1–22.

    Google Scholar 

  12. H.-J. Mieth, Über abklingende Lösungen elliptischer Randwertprobleme (Prinzip von Saint-Venant). Dissertation, Technische Hochschule Darmstadt, 1975.

    Google Scholar 

  13. J. N. Flavin, On Knowles’ version of Saint-Venant’s principle in two-dimensional elastostatics, Arch. Rational Mech. Anal., 53 (1974), pp. 366–375.

    MathSciNet  ADS  MATH  CrossRef  Google Scholar 

  14. C. O. Horgan & J. K. Knowles, Recent developments concerning Saint-Venant’s principle, in Advances in Applied Mechanics, edited by J. W. Hutchinson & T. Y. Wu, vol. 23, pp. 179–269, Academic Press, San Diego, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor J. L. Ericksen

Rights and permissions

Reprints and Permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knowles, J.K. (1986). Remarks on a Question of Ericksen Concerning Elastostatic Fields of Saint-Venant Type. In: The Breadth and Depth of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61634-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61634-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16219-3

  • Online ISBN: 978-3-642-61634-1

  • eBook Packages: Springer Book Archive