The Existence of the Flux Vector and the Divergence Theorem for General Cauchy Fluxes

  • Miroslav Šilhavý


A new proof of the existence of the flux vector is given for general Cauchy fluxes. The proof is based on an approximation theorem in the theory of functions rather than on the classical tetrahedron argument. This enables us to replace the usual assumptions of Lipschitz continuity with respect to area and volume by less restrictive assumptions so as to produce the flux vector fields with possible singularities. The classical expression for the area density of the flux is proved and the flux is shown to satisfy an appropriate version of the divergence theorem.


Vector Field Surface Density Material Surface Borel Subset Lipschitz Continuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. Gurtin & L. C. Martins, Cauchy’s theorem in classical physics, Arch. Rational Mech. Anal. 60 (1976), 305–324.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    L. C. Martins, On Cauchy’s theorem in classical physics: some counterexamples, Arch. Rational Mech. Anal. 60 (1976), 325–328.ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    W. P. Ziemer, Cauchy flux and sets of finite perimeter, Arch. Rational Mech. Anal. 84 (1983), 189–201.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    A. L. Cauchy, Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non-élastiques, Bull. Soc. Philomath. (1823), 9–13.Google Scholar
  5. 5.
    W. Noll, The foundations of classical mechanics in the light of recent advances in continuum mechanics, pp. 266–281 of The Axiomatic Method, with Special Reference to Geometry and Physics (Symposium at Berkley, 1957). Amsterdam: North-Holland Publishing Co. 1959.Google Scholar
  6. 6.
    W. Noll, Lectures on the foundations of continuum mechanics. Arch. Rational Mech. Anal. 52 (1973), 62–92.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    W. Noll, The foundations of mechanics, in Nonlinear Continuum Theories, C.I.M.E. Lectures, Roma 1966.Google Scholar
  8. 8.
    M. E. Gurtin & W. O. Williams, An axiomatic foundation for continuum thermodynamics, Arch. Rational. Mech. Anal. 26 (1967), 83–117.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    M. E. Gurtin, V. J. Mizel, & W. O. Williams, A note on Cauchy’s stress theorem, J. Math. Anal. Appl. 22 (1968), 398–401.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    W. Rudin, Real and Complex Analysis, McGraw-Hill, New York 1966.zbMATHGoogle Scholar
  11. 11.
    H. Federer, Geometric measure theory, Springer-Verlag, New York 1969.zbMATHGoogle Scholar
  12. 12.
    C. Banfi & M. Fabrizio, Sul concetto di sottocorpo nella meccanica dei continui, Rend. Acc. Naz. Lincei, 66 (1979), 136–142.MathSciNetzbMATHGoogle Scholar
  13. 13.
    C. Banfi & M. Fabrizio, Global theory for thermodynamic behaviour of a continuous medium, Ann. Univ. Ferrara 27 (1981), 181–199.MathSciNetzbMATHGoogle Scholar
  14. 14.
    G. Birkhoff & J. Von Neumann, The logic of quantum mechanics, Annals of Math. 37 (1936), 823–843.CrossRefGoogle Scholar
  15. 15.
    B. Fuglede, On a theorem of F. Riesz, Math. Scand. 3 (1955) 283–302.MathSciNetzbMATHGoogle Scholar
  16. 16.
    I. Ekeland & R. Temam, Convex Analysis and Variational Problems, Amsterdam, North-Holland Publishing Co. 1976.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Miroslav Šilhavý
    • 1
  1. 1.Mathematical InstituteCzechoslovak Academy of SciencesPragueCzech Republic

Personalised recommendations