Seifert Manifolds

  • José María Montesinos-Amilibia
Part of the Universitext book series (UTX)


The spherical bundles of surfaces as well as the manifolds of tessellations are examples of Seifert manifolds. Using the language of orbifolds, a Seifert manifold is a manifold (i.e. an orbifold with empty singular set) that fibers over a 2-orbifold whose singular points form a discrete set (and have cyclic isotropy groups). The manifolds of tessellations are the spherical bundles of such 2-orbifolds.


Euler Number Tubular Neighbourhood Solid Torus General Fiber Spherical Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonahon, F., Siebenmann, L.: [BS]Google Scholar
  2. Kulkarni, R., Raymond, F.: 3-dimensional Lorentz Space-forms and Seifert fiber spaces (preprint)Google Scholar
  3. Montesinos, J.M.: [Mo]Google Scholar
  4. Orlik, P.: Seifert manifolds. Lect. Notes in Math. 291. BerlinHeidelberg-New York: Springer 1972Google Scholar
  5. Raymond, F.: Classification of the actions of the circle on 3-manifolds. Trans. Amer. Math. Soc. 131, 51–78 (1968)MathSciNetzbMATHGoogle Scholar
  6. Raymond, F., Vasquez, A.T.: [RV]Google Scholar
  7. Seifert, H.: [S]Google Scholar
  8. Threlfall, W., Seifert, H.: [TS]Google Scholar
  9. Waldhausen, F.: [Wa]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • José María Montesinos-Amilibia
    • 1
  1. 1.Facultad de MatemáticasUniversidad ComplutenseMadridSpain

Personalised recommendations