Advertisement

Integrated Polytrees: A Generalized Model for the Integration of Spatial Decomposition and Boundary Representation

  • Martin J. Dürst
  • Tosiyasu L. Kunii

Abstract

We present a new and more efficient way to store polygonal and polyhedral data. Generalizing the splitting rule of the polytree, we obtain a storage requirement that is much lower and more stable, and actually has an upper bound for any given object. Using polytrees as a spatial directory in combination with the boundary representation (which stores geometric and topological data), we obtain an integrated data structure that permits the execution of a broad variety of algorithms for a wide range of applications in reasonable time.

Keywords

Black Hole Computer Graphic Boundary Representation Simple Polygon Spatial Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayala, D., Brunet, P., Juan, R., and Navazo, I., Object Representation by Means of Nonminimal Division Quadtrees and Octrees, ACM Trans, on Graphics 4 (1985), 41–59.CrossRefGoogle Scholar
  2. 2.
    Blinn, J.F., Jim Blinn’s Corner: Platonic Solids, IEEE Comp. Graphics and Appl. 7 (1987), No. 11, 62–66.CrossRefGoogle Scholar
  3. 3.
    Brunet, P., and Navazo, L, Geometric Modelling Using Exact Octree Representation of Polyhedral Objects, in: Vandoni, C.E. (ed.), Eurographics’ 85, Elsevier Science Publishers, North-Holland, 1985, 159–169.Google Scholar
  4. 4.
    Brunet, P., and Ayala, D., Extended Octtree Representation of Free Form Surfaces, Computer Aided Geometric Design 4 (1987), 141–154.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Carlbom L, Chakravarty, L, and Vanderschel, D., A Hierarchical Data Structure for Representing the Spatial Decomposition of 3-D Objects, IEEE Comp. Graphics and Appl. 5 (1985), No. 4, 24–31.CrossRefGoogle Scholar
  6. 6.
    Carlbom, I., An Algorithm for Geometric Set Operations Using Cellular Subdivision Techniques, IEEE Comp. Graphics and Appl. 7 (1987), No. 5, 44–55.CrossRefGoogle Scholar
  7. 7.
    Doctor, L.J. and Torborg, J.G., Display Techniques for Octree-Encoded Objects, IEEE Comp. Graphics and Appl. 1 (1981), No. 3, 29–38.Google Scholar
  8. 8.
    Esterling, D.M. and Van Rosendale, J., An Intersection Algorithm for Moving Parts, NASA Conference Publication 2272, Computer-Aided Geometry Modeling, NASA Langley Research Center, Hampton, 1983, 129–133.Google Scholar
  9. 9.
    Fujimura, K., Toriya, H., Yamaguchi, K. and Kunii, T.L., Oct-Tree Algorithms for Solid Modelling, in: Kunii, T.L. (ed.), Computer Graphics: Theory and Applications, Proc. InterGraphics’ 83, Springer-Verlag, Tokyo, 1983, 96–110 (shorter version: [36]).Google Scholar
  10. 10.
    Fujimura, K. and Kunii, T.L., A Hierarchical Space Indexing Method, in: Kunii, T.L. (ed.),Computer Graphics: Visual Technology and Art, Proc. Computer Graphics Tokyo’ 85, Springer-Verlag, Tokyo, 1985, 21–34.Google Scholar
  11. 11.
    Fujimoto, A., Tanaka, T. and Iwata, K., ARTS: Accelerated Ray-Tracing System, IEEE Comp. Graphics and Appl. 6 (1986), No. 4, 16–26.CrossRefGoogle Scholar
  12. 12.
    Glassner, A.S., Space Subdivision for Fast Ray Tracing, IEEE Comp. Graphics and Appl. 4 (1984), No. 10, 15–22.Google Scholar
  13. 13.
    Glassner, A.S., Spacetime Ray Tracing for Animation, IEEE Comp. Graphics and Appl. 8 (1988), No. 3, 60–70.CrossRefGoogle Scholar
  14. 14.
    Grant, Ch.W., Integrated Analytic Spatial and Temporal Anti-Aliasing for Polyhedra in 4-Space, Computer Graphics (Proc. SIGGRAPH) 19 (1985), 79–84.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Grosky, W.I. and Jain, R., Optimal Quadtrees for Image Segments, IEEE Trans. Pattern Anal. Machine Intell. PAMI-5 (1983), 77–83.Google Scholar
  16. 16.
    Hunter, G.M. and Steiglitz, K., Operations on Images Using Quad Trees, IEEE Trans. Pattern Anal. Machine Intell. PAMI-1 (1979), 145–153.CrossRefGoogle Scholar
  17. 17.
    Jackins, Ch.L. and Tanimoto, St.L., Quad-Trees, Oct-Trees, and K-Trees: A Generalized Approach to Recursive Decomposition of Euclidean Space, IEEE Trans. Pattern Anal. Machine Intell. PAMI-5 (1983), 533–539.CrossRefGoogle Scholar
  18. 18.
    Mäntylä, M. and Tamminen, M., Localized Set Operations for Solid Modeling, Computer Graphics (Proc. SIGGRAPH) 17 (1983), 279–288.CrossRefGoogle Scholar
  19. 19.
    Meagher, D., Geometric Modeling Using Octree Encoding, Computer Graphics and Image Processing 19 (1982), 129–147.Google Scholar
  20. 20.
    Navazo, I., Ayala, D. and Brunet, P., A Geometric Modeller Based on the Exact Octtree Representation of Polyhedra, Computer Graphics Forum 5 (1986), 91–104.CrossRefGoogle Scholar
  21. 21.
    Navazo, I., Fontdecaba, J. and Brunet, P., Extended Octtrees, between CSG Trees and Boundary Representations, in: Maréchal, G. (ed.), Eurographics’ 87, Elsevier Science Publishers, North-Holland, 1987, 239–247.Google Scholar
  22. 22.
    Nelson, R.C. and Samet, H., A Consistent Hierarchical Representation for Vector Data, Computer Graphics (Proc. SIGGRAPH) 20 (1986), 197–206.CrossRefGoogle Scholar
  23. 23.
    Requicha, A.A.G., Representations for Rigid Solids: Theory, Methods, and Systems, ACM Computing Surveys 12 (1980), 437–464.CrossRefGoogle Scholar
  24. 24.
    Requicha, A.A.G. and Voelcker, H.B., Solid Modeling: Current Status and Research Directions, IEEE Comp. Graphics and Appl. 3 (1983), No. 7, 25–37.CrossRefGoogle Scholar
  25. 25.
    Samet, H., The Quadtree and Related Hierarchical Data Structures, ACM Computing Surveys 16 (1984), 187–260.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Samet, H. and Webber, R.E., Storing a Collection of Polygons Using Quadtrees, ACM Trans, on Graphics 4 (1985), 182–222.CrossRefGoogle Scholar
  27. 27.
    Samet, H. and Tamminen, M., Bintrees, CSG Trees, and Time, Computer Graphics (Proc. SIGGRAPH) 19 (1985), 121–130.CrossRefGoogle Scholar
  28. 28.
    Samet, H. and Webber, R.E., Hierarchical Data Structures and Algorithms for Computer Graphics, Part I: Fundamentals, and Part II: Applications, IEEE Comp. Graphics and Appl. 8 (1988), No. 3, 48–68, and No. 4, 59–75.CrossRefGoogle Scholar
  29. 29.
    Tamminen, M., Performance Analysis of Cell Based Geometric File Organisations, Computer Vision, Graphics, and Image Processing 24 (1983), 160–181.CrossRefGoogle Scholar
  30. 29.
    Thibault, W.C. and Naylor, R.F., Set Operations on Polyhedra Using Binary Space Partitioning Trees, Computer Graphics (Proc. SIGGRAPH) 21 (1987), 153–162.MathSciNetCrossRefGoogle Scholar
  31. 30.
    Weng, J. and Ahuja, N., Octrees of Objects in Arbitrary Motion: Representation and Efficiency, Computer Vision, Graphics, and Image Processing 39 (1987), 167–185.CrossRefGoogle Scholar
  32. 31.
    Woo, T.C, A Combinatorial Analysis of Boundary Data Structure Schemata, IEEE Comp. Graphics and Appl. 5 (1985), No. 3, 19–27.MathSciNetCrossRefGoogle Scholar
  33. 32.
    Woodwark, J.R. and Bowyer, A., Better and faster pictures from solid models, Computer-Aided Engineering Journal, Feb. 1986, 17–24.Google Scholar
  34. 33.
    Woodwark J.R., Eliminating Redundant Primitives from Set Theoretic Solid Models by a Consideration of Constituents, IEEE Comp. Graphics and Appl. 8 (1988), No. 3, 38–47.CrossRefGoogle Scholar
  35. 34.
    Wyvill, G. and Kunii, T.L., A Functional Model for Constructive Solid Geometry, The Visual Computer 1 (1985), 3–14. (cf. [35])Google Scholar
  36. 35.
    Wyvill, G. and Kunii, T.L., Space Division for Ray Tracing in CSG, IEEE Comp. Graphics and Appl. 6 (1986), No. 4, 28–34. (revised version of [34])CrossRefGoogle Scholar
  37. 36.
    Yamaguchi, K., Kunii, T.L., Fujimura, K., and Toriya, H., Octree-Related Data Structures and Algorithms, IEEE Comp. Graphics and Appl. 4 (1984), No. 1, 53–59. (cf. [9])CrossRefGoogle Scholar
  38. 37.
    Earle, J.H., Engineering Design Graphics, Addison-Wesley, Reading, MA, 5th edition, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Martin J. Dürst
    • 1
  • Tosiyasu L. Kunii
    • 1
  1. 1.Department of Information Science, Faculty of ScienceUniversity of TokyoBunkyo-ku, 113 TokyoJapan

Personalised recommendations