The generalized inverse matrix and the surface-surface intersection problem

  • Gábor Lukács
Conference paper

Abstract

A marching-type algorithm is presented for intersection of parametric surfaces. Generalized inverse methods are used for finding starting points on the intersection curves and for handling singular cases.

Keywords

Manifold Intersection Line Sorting Nash Topo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarnes, E. Intersection between two free form surfaces. Digitalization of 3D curves In: CAD’80, 4th Conference pp. 243–250.Google Scholar
  2. 2.
    Ben Israel, A. A Newton-Raphson method for the solution of system of equations Journal of Mathematical Analysis and Application, Vol. 15., 1966, pp. 243–252.MATHCrossRefGoogle Scholar
  3. 3.
    Barnhill, R.E., Farin, G., Jordan, M., Piper, B.R. Surface/surface intersection CAGD 1987, Vol.4, pp. 3–16.MathSciNetMATHGoogle Scholar
  4. 4.
    Catmull, E., Clark, J. Recursively generated B-spline surfaces on arbitrary topological meshes CAD 1978, Vol.10, pp. 350–355.Google Scholar
  5. 5.
    Caubet, R., Matallah, N., Djedi, N., Sandouk, M.Z. Intersection de deux surfaces paramètriques. Mèthode de subdivision rècursive. (In French.) Actes PIXIM’88 HERMES, Paris, 1988, pp. 103–119.Google Scholar
  6. 6.
    Chen, J.J., Ozsoy, T.M. An intersection algorithm for C 2 parametric surfaces In: CAD’86, 7th Conference, pp. 69–77.Google Scholar
  7. 7.
    Cohen, E., Lyche, T., Riesenfeld, R. Discrete B-Splines and subdivision techniques in Computer Aided Geometric Design and Computer Graphics Computer Graphics and Image Processing 1980, 14, pp. 87–111.CrossRefGoogle Scholar
  8. 8.
    Davidenko, D.F. O priblizhennom reshenii sistem nelineinykh uravnenii (On approximative solution of systems of nonlinear equations. In Russian.) Ukcainskii Matematicheskii Zhurnal, 1953, Vol. V., No.2. pp. 196–206.MathSciNetGoogle Scholar
  9. 9.
    Deuflhard, P. A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting Numerische Mathematik, Vol. 22., 1974, pp. 289–315.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Drexler, F.J. Eine Methode zur Berechnung samtlicher Losungen von Polynomgleichungssytemen (In German.) Numerische Mathematik, Vol. 29., 1977, pp. 45–58.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Faux, I.D., Pratt, M.J. Computational Geometry for Design and Manufacture Ellis Horwood Limited 1979, ch. 9.1. 257–267; ch. A4 295–300Google Scholar
  12. 12.
    Fletcher, R. Generalized inverse methods for the best least squares solution of systems of non-linear equations The Computer Journal, Vol. 10., 1968., pp. 392–399.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Fletcher, R., Powell, M.J.D. A rapidly convergent descent method for minimization The Computer Journal, Vol. 6., 1963., pp. 163–168.MathSciNetMATHGoogle Scholar
  14. 14.
    Golub, G.H., Reinsch, C. Handbook series linear algebra: Singular value decomposition and least square solutions Numerische Mathematik, Vol. 14., 1970, pp. 403–420.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hanna, S.L., Abel, J.F., Greenberg, D.P. Intersection of parametric surfaces by means of look-up tables IEEE CG&A, October 1983, pp. 39–48.Google Scholar
  16. 16.
    Hartwig, R. Hyperbolic data representation and analysis (HYDRA) In: Proceedings of Eurographics’79, Bologna, pp. 236–251.Google Scholar
  17. 17.
    Hartwig, R., Nowacki, H. Isolinien und Schnitte in Coonsschen Flächen (In German.) In: Geometrisches Modellieren, Springer 1983, pp. 329–343.Google Scholar
  18. 18.
    Houghton, E.G., Emnett, R.F., Factor, J.D., Sabharwal, Ch.L. Implementation of a divide-and-conquer method for intersection of parametric surfaces CAGD 1985, 2, pp. 173–183MATHGoogle Scholar
  19. 19.
    Lasser, D. Intersection of parametric surfaces in the Bernstein-Bezier representation CAD, May 1986, Vol. 18, pp. 186–192.Google Scholar
  20. 20.
    Levin, J. A Parametric Algorithm for Drawing Pictures of Solid Objects Composed of Quadric Surfaces Communications of the ACM, October 1976, Vol. 19., No. 10., pp. 555–563.MATHCrossRefGoogle Scholar
  21. 21.
    Levin, J. Mathematical models for determining the intersections of quadric surfaces Computer Graphics and Image Processing 1979, 11Google Scholar
  22. 22.
    Miller, J.D. Finding Roots of Equations in Given Neighbourhoods Applied Mathematics and Computation, September 1987, Vol. 23.,No.3., pp. 235–241.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Morgan, A.P. A method for computing all solutions to systems of polynomial equations ACM Trans. Math. Software, March 1983, Vol. 9., pp. 1–17.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Mortenson, M.E. Geometric Modeling J. Wiley & Sons 1985, ch. 7.4. pp. 333–344Google Scholar
  25. 25.
    Nash, J.C. Compact numerical methods for computers: linear algebra and function minimisation, Adam Hilger Ltd, Bristol, 1979Google Scholar
  26. 26.
    Ocken, S., Schwartz, J.T., Sharir, M. Precise implementation of CAD primitives using rational parametrizations of standard surfaces In: Solid Modeling by Computers. From Theory to Applications (Ed. by M.S. Pickett and J.W. Boyse) Plenum Press, New York-London, 1984, pp. 259–273.Google Scholar
  27. 27.
    Ortega, J.M., Rheinboldt, W.C. Iterative solution of nonlinear equations in several variables Academic Press, New York and London, 1970MATHGoogle Scholar
  28. 28.
    Peng, Q.S. An algorithm for finding the intersection lines between two B-spline surfaces CAD, July 1984, Vol. 16., pp. 191–196.Google Scholar
  29. 29.
    Petersen, C. Adaptive contouring of 3-dimensional surfaces CAGD 1984, Vol. 1., pp. 61–74.MATHGoogle Scholar
  30. 30.
    Pfeifer, H.U. Methods used for intersecting geometrical entities in the GPM module for volume geometry CAD September 1985, Vol. 17., No. 7., pp. 311–318.Google Scholar
  31. 31.
    Phillips, M.B., Odell, G.M. An algorithm for locating and displaying the intersection of two arbitrary surfaces IEEE CG&A September 1984, pp. 48–58.Google Scholar
  32. 32.
    Pratt, M.J., Geisow, A.D. Surface / surface intersection problems In: The mathematics of surfaces. Ed. by J.A. Gregory Clarendon Press—Oxford, 1986, pp. 117–142.Google Scholar
  33. 33.
    Sabin, M.A. Interrogation techniques for parametric surfaces B.A.C. Weybridge Report on the Numerical Master Geometry System 1969, pp.1–5.Google Scholar
  34. 34.
    Sabin, M.A. Contouring—the State of the Art In: NATO ASI Series, Vol F17, Fundamental Algorithms for Computer Graphics. Ed. by R.A. Earnshaw Springer 1985, pp. 411–482.Google Scholar
  35. 35.
    Sagara, N., Fukushima, M. An efficient predictor-corrector method for solving nonlinear equations Journal of Computational and Applied Mathematics 19 (1987), pp. 343–349.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Sarraga, R.F. Algebraic methods for intersections of quadric surfaces in GMSOLID Computer Vision, Graphics and Image Processing, May 1983, Vol. 22. pp. 222–238.CrossRefGoogle Scholar
  37. 37.
    Sarraga, R.F., Waters, W.C. Free-form surfaces in GMSOLID: Goals and Issues In: Solid Modeling by Computers. From Theory to Applications (Ed. by M.S. Pickett and J.W. Boyse) Plenum Press, New York-London, 1984, pp. 187–210.Google Scholar
  38. 38.
    Sederberg, T.W., Anderson, D.C, Goldmann, R.N. Implicit representation of parametric curves and surfaces Computer Vision, Graphics and Image Processing, October 1984, Vol. 28. pp. 72–84.CrossRefGoogle Scholar
  39. 39.
    Sederberg, T.W., Meyers, R.J. Loop detection in surface patch intersections CAGD 5 (1988), pp. 161–171.MathSciNetMATHGoogle Scholar
  40. 40.
    SutclifTe, D. Contouring over rectangular and skewed rectangular grids —an introduction In: Mathematical Methods in Computer Graphics and Design (ed. K. Brodlie) Academic Press 1980, pp. 39–62.Google Scholar
  41. 41.
    Varady, T. Surface-surface intersections for double-quadratic parametric patches in a solid modeller In: Proceedings of the 3rd Anglo-Hungarian Seminar on CAGD. Cambridge U.K., 1983Google Scholar
  42. 42.
    Wright, A.H. Finding All Solutions to a System of Polynomial Equations Mathematics of Computation, January 1985, Vol.44., No.169, pp. 125–133.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Gábor Lukács
    • 1
  1. 1.Computer and Automation InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations