Skip to main content

Sicherheitsaspekte von Wasserstoff als Energieträger und Energiespeicher

  • Chapter

Zusammenfassung

Wasserstoff ist Grundstoff der Chemietechnik und wird in der chemischen Industrie seit Jahrzehnten großtechnisch sicher beherrscht. Herstellung, Speicherung, Transport und Nutzung von Wasserstoff sind dort im wesentlichen Routine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 4

  1. Isting, Chr.: Erfahrungen mit einem Pipeline-Verbundnetz für Wasserstoff. 3R international, No. 6 (1974).

    Google Scholar 

  2. Kaske, G.: Chem. Ing. Tech. 48, Heft 2 (1976).

    Google Scholar 

  3. Liu, D.S.U. et al.: Some results of WNRE experiments on hydrogen combustion. Proc. of the Workshop on the Impact of Hydrogen on Water Reactor Safety, Vol. III, 1981.

    Google Scholar 

  4. Bartknecht, W.: Explosionen. Berlin: Springer 1978.

    Book  Google Scholar 

  5. Lee, J.H.: Overview of gas explosions and recent results in the study of turbulent deflagrations and detonations. Int. Symp. on Control and Prevention of Gas Explosions, London, 1983.

    Google Scholar 

  6. Bartknecht, W.: Ablauf von Staub-und Gasexplosionen und deren Bekämpfung. Jahrestagung 1973 des Instituts für Chemie der Treib-und Explosivstoffe Pfinzthal-Berghausen.

    Google Scholar 

  7. Baker, W.E.: Blast waves emitted from gas explosions. Int. Symp. on Control and Prevention of Gas Explosions, London, 1983.

    Google Scholar 

  8. Thompson, L.B. et al.: Nucl. Saf. 25, No. 3, (1984).

    Google Scholar 

  9. Berman, M.; Cummings, J.C.: Reactors, Nucl. Saf. 25, No. 1 (1984).

    Google Scholar 

  10. Brewer, G.D. et al: Assessment of crash fire hazard of LH2 fueled aircraft. NASA-Rep. CR-165525, 1981.

    Google Scholar 

  11. Cassut, L.H. et al: Adv. Cryog. Eng. 5 (1959) 55–61.

    Google Scholar 

  12. Zabetakis, M.G. et al.: Adv. Cryog. Eng. 6 (1960) 185–194.

    Google Scholar 

  13. Ward, D.L. et al.: Adv. Cryog. Eng. 9 (1963) 390–400.

    Google Scholar 

  14. Witkofsky, R.D.; Chirivella, J.E.: Experimental and analytical analysis of the mechanisms governing dispersion of flammable cloads funned by liqaid hydrogen spills. Proc. 4th World Hydrogen Energy Conf., Vol. 4, 1982.

    Google Scholar 

  15. Hord, J.: Is hydrogen safe? NBS Tech. Note 690. Inst, for Basic Standards, National Bureau of Standards, Boulder, Colorado, Oct 1976

    Google Scholar 

  16. Christner, H.: Experimentelle Bestimmungen der Zündgrenzen von Mehrstoffgemischen in Abhängigkeit vun Anfangs-Temperatur,-Druek und Zündenergie. Dechema-Aussehuß Gas-und Flammenreaktionen, Februar 1974.

    Google Scholar 

  17. Coward, H.F.; Jones, G.W.: Limits of flammability of gases and vapors. National Bureau of Standards, 1952, No 503

    Google Scholar 

  18. Baker, N.R.; van Vorst, W.D.: Mixture properties for hydrogen supplementation of natural gas. Hydrogen energy systems III. Oxford: Pergamon Press 1979.

    Google Scholar 

  19. Lewis, B.; von Elbe, G.: Combustion flames and explosions of gases, 2nd edn. 1961 New York. Academic Press.

    Google Scholar 

  20. McKinley, C.: Safe handling of hydrogen. American Chemical Society. Symp. Ser. Vol. 116, Washington 1980.

    Google Scholar 

  21. Static Electricity 1972. National Fire Protection Assoc. Boston, NFPA No. 77, 1972.

    Google Scholar 

  22. Sicherheitsaspekte einer künftigen europäischen Wasserstofftechnologie. Friedrichshafen: Domier Systemtechnik, 1979.

    Google Scholar 

  23. Warnatz, J.: Concentration, pressure and temperature dependence of the flame velocity in hydrogen-oxygen-nitrogen-mixtures. Combust. Sci. Technol. 26 (1981).

    Google Scholar 

  24. Zeldovich, Y.; Kompaneets, A.S.: Theory of detonations. New York: Academic Press 1960.

    Google Scholar 

  25. Strehlow, R.A.; Baker, W.E.: The characterization and evaluation of accidental explosions. NASA CR—134799, 1975.

    Google Scholar 

  26. Kinney, G.F.:Explosive shocks in air. New York: Macmillan 1963.

    Google Scholar 

  27. Burgess, D.S. et al.: Volume of flammable mixtures resulting from atmospheric dispersion of a leak or spill. 15th Int. Symp. on Combust., The Combustion Inst. Pittsburgh, 1974.

    Google Scholar 

  28. Eichert, H.; Fischer, M.: Hydrogen safety in energy applictions compared with natural gas. Proc. 5th WIIEC, 1869–1880, Toronto, Canada, 1984.

    Google Scholar 

  29. Lee, J.H.; Moen, I.O.: The mechanism of transition from deflagration to detonation in vapor cloud explosions. Progr. Energy Combust. Sci. 6 (1980).

    Google Scholar 

  30. Bartlmä, F.: Gasdynamik der Verbrennung. Berlin: Springer 1975.

    Book  Google Scholar 

  31. Bartlmä, F.: The transition from slow burning to detonation. Acta Astronautica 6 (1979).

    Google Scholar 

  32. Westbrook, C.K.: Hydrogen oxidation kinetics in gaseous detonations. Combust. Sci. Technol. 29 (1982).

    Google Scholar 

  33. Bazhenova, T.V. et al.: Influence of the nature of confinement on gaseous detonation. 7th ICOGER, Göttingen. 1979.

    Google Scholar 

  34. Adams, G.K.; Pack, D.C.: Some observations on the problem of transition between deflagration and detonation. 7th Symp. Int. on Combust. 1959.

    Google Scholar 

  35. Edse, R.; Lawrence, J.R.: Detonation induction phenomena and flame propagation rates in low temperature hydrogen-oxygen mixtures. Combust. Flame 13 (1969).

    Google Scholar 

  36. Belles. F.E.: Detonability and chemical kinetics: Prediction of limits of detonability of hydrogen. 7th Symp. Int. on Combust. 1959.

    Google Scholar 

  37. Lee, J.H.S.: Ann. Rev. Phys. Chem. 28 (1977) 75–104.

    Article  Google Scholar 

  38. Pawel, D. et al.: Combust. Flame 15 (1970) 173–177.

    Article  Google Scholar 

  39. Boni, A.A. et al.: Transition to detonation in an unconfined turbulent medium. AIAA 11th Aerospace Sciences Meeting, Los Angeles, 1977.

    Google Scholar 

  40. Burgess, D.S. et al: Large scale studies of gas detonations, Bureau of Mines. Investigations Rep. 7196 (1968).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, M., Eichert, H. (1989). Sicherheitsaspekte von Wasserstoff als Energieträger und Energiespeicher. In: Winter, CJ., Nitsch, J. (eds) Wasserstoff als Energieträger. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61538-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61538-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64864-9

  • Online ISBN: 978-3-642-61538-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics