Skip to main content
Book cover

Trees II pp 591–613Cite as

Cycads

  • Chapter
  • 443 Accesses

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 5))

Abstract

Present-day cycads comprise the diverse, modified remnants of a much larger group of gymnosperms which flourished in the Mesozoic Era, reaching their zenith in the Jurassic Period, about 160 million years ago. Distribution of extinct members of the Cycadales is limited to tropical and mild temperate regions. Cycads occupy a wide variety of habitats ranging from tropical rainforest to dry savanna. These plants have many xeromorphic adaptations, and in xeric habitats they may comprise a significant component of the vegetation. In mesic environments, cycads are usually restricted to the forest understorey, where they may form the principal vegetation component (Halliday and Pate 1976). In the Central American rainforests of Costa Rica and Panama, Zamia pseudoparasitica lives as an epiphyte in the canopy. Otherwise, cycads are terrestrial and have two principal growth forms. They may be arborescent (Figs. 1, 2) and achieve heights of 13–18 m (Lepidozamia hopei and Encephalartos transvenosus) or they may be small shrubs with subterranean stems like Zamia pumila. Most species are sparsely branched, and usually have one dominant axis (Fig. 1). Cycas circinalis and other members of this genus have irregular branching patterns and produce branches or “suckers” at the base of the primary axis (Fig. 2). Decapitation or wounding of the apex, as well as pronounced bending of the trunk, stimulates branching (Giddy pers. commun.). Arborescent species bear a superficial resemblance to palms, and the name “cycad” is derived from the Greek word meaning “palm-like”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold S von, Hakman I (1986) Effect of sucrose on initiation of embyrogenesic callus cultures from mature zygotic embryos of Picea abies (L.) Karst. (Norway spruce). J Plant Physiol 122:261–265

    Google Scholar 

  • Belajeff WC (1891) Zur Lehre von dem Pollenschlauch der Gymnospermen. Ber Dtsch Botan Ges 9:280–286

    Google Scholar 

  • Brown CL (1966) Growth and development of Zamia embryos in vitro. Proc Assoc South Agric Workers (ASAW), Jackson, Miss

    Google Scholar 

  • Brown CL, Lawrence RH (1968) Culture of pine callus on a defined medium. For Sci 14:62–64

    Google Scholar 

  • Brown CL, Teas HJ (1966) Cycad tissue cultures on a defined medium. South Am Soc Plant Physiol, Proc ASAW, Jackson, Miss

    Google Scholar 

  • Burch DG (1981 a) The propagation of Florida Zamia from stem pieces. SNA Res Conf 94:221–223

    Google Scholar 

  • Burch DG (1981 b) The propagation of cycads — a game for young people? Proc Fla State Hortic Soc 94:216–218

    Google Scholar 

  • Coulter JM, Chrysler MA (1904) Regeneration in Zamia. Bot Gaz 56:452–458

    Article  Google Scholar 

  • Dehgan B (1983) Propagation and growth of cycads — a conservation strategy. Proc Fla State Hortic Soc 96:137–139

    Google Scholar 

  • Dehgan B, Johnson CR (1983) Improved seed germination of Zamia floridana (Sensu lato) with H2SO4 and GA3. Sci Hortic 19:357–361

    Article  CAS  Google Scholar 

  • Dehgan B, Schutzman B (1983) Effect of H2SO4 and GA3 on seed germination of Zamia furfuracea. HortSci 18:371–372

    CAS  Google Scholar 

  • Dehgan B, Yuen CKKH (1983) Seed morphology in relations to dispersal, evolution and propagation of Cycas L. Bot Gaz 144:412–418

    Article  Google Scholar 

  • De Luca P, Sabato S (1979) In vitro spermatogenesis of Encephalartos Lehm. Caryologia 32:241–245

    Google Scholar 

  • De Luca P, Sabato S (1980) Regeneration of coralloid roots on cycad megagametophytes. Plant Sci Lett 18:27–31

    Article  Google Scholar 

  • De Luca P, Moretti A, Sabato S (1979) Regeneration in megagametophytes of cycads. Gi Bot Ital 113:129–143

    Article  Google Scholar 

  • De Luca P, La Valva V, Sabato S (1980a) Spermatogenesis and tissue formation in cycad pollen grains. Caryologia 33:261–265

    Google Scholar 

  • De Luca P, Sabato S, Balduzzi A, Nazzaro R (1980b) Coralloid root regeneration on Macrozamia megagametophytes. Gi Bot Ital 114:271–275

    Article  Google Scholar 

  • Ducharte MP (1888) Note sur l’enranciment de l’albumen d’un Cycas. Bull Soc Bot Fr 35:243–251

    Google Scholar 

  • Dyer RA (1965) The cycads of Southern Africa. Bothalia 8(4). Gov Printer, Pretoria, S Afr

    Google Scholar 

  • Gautheret RJ (1942) Manuel technique de culture des tissus végétaux. Masson, Paris

    Google Scholar 

  • Giddy C (1984) Cycads of South Africa, 2nd edn. Struik, Capetown

    Google Scholar 

  • Gilbert S (1984) Cycads: Status, trade, exploitation and protection 1977–1982. World Wildlife Fund, Washington

    Google Scholar 

  • Hakman I, Arnold S von (1985) Plantlet regeneration through somatic embryogenesis in Picea abies (Norway Spruce). J Plant Physiol 121:149–158

    CAS  Google Scholar 

  • Hakman I, Fowke LC, Arnold S von, Eriksson T (1985) The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci 38:53–59

    Article  Google Scholar 

  • Halliday J, Pate JS (1976) Symbiotic nitrogen fixation by coralloid roots of the cycad Macrozamia riedlei: Physiological characteristics and ecological significance. Aust J Plant Physiol 3:349–358

    Article  CAS  Google Scholar 

  • Hildebrandt AC, Riker AJ, Duggar BM (1946) The influence of the composition of the medium on growth in vitro of excised tobacco and sunflower tissue cultures. Am J Bot 33:591–597

    Article  CAS  Google Scholar 

  • Juranyi L (1872) Bau und Entwicklung des Pollens bei Ceratozamia longifolia Miq. Jahrb Wiss Bot 8:382–400

    Google Scholar 

  • Keng H (1972) Cycad seed as food in Malaya. Malay Nat J 25:101–103

    Google Scholar 

  • Kiem SC (1972) Pollination of cycads. Bull Fairchild Trop Garden 27:6–11

    Google Scholar 

  • Knudson L (1946) A nutrient solution for the germination of orchid seed. Bull Am Orch Soc 15:214–217

    CAS  Google Scholar 

  • Koeleman A, Small JGC (1982) A note on callus formation by stem and root tissue of some Encephalartos spp. S Afr J Bot 1:165–166

    Google Scholar 

  • Krikorian AD (1982) Cloning higher plants from aseptically cultured tissues and cells. Biol Rev 57:151–218

    Article  Google Scholar 

  • Laliberte S, Bertrand C, Veith H (1983) Callogenesis and degree of differentiation in endosperm cultures of Encephalartos villosus. Rev Can Biol Exp 42:7–12

    Google Scholar 

  • Lamont BB, Ryan RA (1977) Formation of coralloid roots by cycads under sterile conditions. Phytomorphology 27:426–429

    Google Scholar 

  • La Rue CD (1948) Regeneration in the megagametophyte of Zamia floridana. Bull Torrey Bot Club 75:597–603

    Article  Google Scholar 

  • La Rue CD (1950) Regeneration in cycads. Am J Bot 37:664

    Google Scholar 

  • La Rue CD (1954) Studies on growth and regeneration in gametophytes and sporophytes on gymnosperms. Brookhaven Symp Biol 6:187–208

    Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 19:100–127

    Article  Google Scholar 

  • Monnier M, Norstog K (1984) Developmental aspects of immature Zamia embryos in culture. Z Pflanzenphysiol 113:105–116

    Google Scholar 

  • Murashige T (1974) Plant propagation through tissue cultures. Annu Rev Plant Physiol 25:135–166

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mustoe JL (1967) Cultivation of cambial explants of various gymnosperms in vitro. MS Thesis, Univ Georgia, USA

    Google Scholar 

  • Newell SJ (1983) Reproduction in a natural population of cycads (Zamia pumila L.) in Puerto Rico. Bull Torrey Bot Club 110:464–473

    Article  Google Scholar 

  • Norstog K (1965) Induction of apogamy in megagametophytes of Zamia integrifolia. Am J Bot 52:993–999

    Article  Google Scholar 

  • Norstog K (1976) Studies on the survival of very small barley embryos in culture. Bull Torrey Bot Club 94:223–229

    Article  Google Scholar 

  • Norstog K (1982) Experimental embryology of gymnosperms. In: Johri BM (ed) Experimental embryology of gymnosperms. Springer, Berlin Heidelberg New York, pp 25–51

    Google Scholar 

  • Norstog K, Rhamstine E (1967) Isolation and culture of haploid and diploid cycad tissues. Phytomorphology 17:374–381

    Google Scholar 

  • Norstog K, Smith J (1963) Culture of small barley embryos on defined media. Science 142:1655–1656

    Article  PubMed  CAS  Google Scholar 

  • Norstog K, Stevenson DW (1980) Wind or insects? The pollination biology of cycads. Fairchild Trop Garden Bull 35:28–30

    Google Scholar 

  • Osborne R (1986) Focus on Encephalartos woodii. Encephalartos 5:4–10

    Google Scholar 

  • Osborne R, Hendricks JG (1985) A world list of cycads. Encephalartos 3:13–17

    Google Scholar 

  • Osborne R, Hendricks JG (1986) Supplement I to the world list of cycads. Encephalartos 5:27

    Google Scholar 

  • Osborne R, Van Staden J (1987) In vitro regeneration of Stangeria eriopus. HortSci 22:1326

    Google Scholar 

  • Pena E, Grillo E, Perez D (1982) Proliferation of Microcycas calocoma in vitro. Rev Jard Bot Nacl 3:177–196

    Google Scholar 

  • Rivera Rosa ME (1981) Effects of naphthaleneacetic acid (NAA), benzylaminopurine (BAP) on callus formation and organogenesis of Zamia latifoliolata embryos and megagametophytes. M S Thesis, Univ Puerto Rico, Rio Piedras

    Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for the induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Smith GS (1978) Seed scarification to speed germination of ornamental cycads (Zamia spp.). SNA Res Conf 91:64–67

    Google Scholar 

  • Starszak-Tur ED (1982) The effects of glutamine on callus growth and differentiation from Zamia pumila L. embryo explants. M S Thesis, Univ Puerto Rico, Rio Piedras

    Google Scholar 

  • Stevenson DW (1985) A proposed classification of the Cycadales. Am J Bot 72:971–972

    Google Scholar 

  • Stopes MC (1910) Adventitious budding and branching in Cycas. New Phytol 9:235–241

    Article  Google Scholar 

  • Strasburgber E (1892) Über das Verhalten des Pollens und die Befruchtungsvorgänge bei den Gymnospermen. Histol Beitr 4:1–158

    Google Scholar 

  • Stuart DA, Strickland SG (1984a) Somatic embryogenesis from cell cultures of Medicago sativa L. I. The role of amino acid additions to the regeneration medium. Plant Sci Lett 34:165–174

    Article  CAS  Google Scholar 

  • Stuart DA, Strickland SG (1984b) Somatic embryogenesis from cell cultures of Medicago sativa L. II. The interactions of amino acids with ammonium. Plant Sci Lett 34:175–181

    Article  CAS  Google Scholar 

  • Thieret JW (1958) Economic botany of cycads. Econ Bot 12:3–41

    Article  Google Scholar 

  • Thorpe TA (1980) Organogenesis in vitro: Structural, physiological and biochemical aspects. Int Rev Cytol Suppl 11A:71–111

    CAS  Google Scholar 

  • Tulecke W (1957) The pollen of Ginkgo biloba: In vitro culture and tissue formation. Am J Bot 44:602–608

    Article  Google Scholar 

  • Webb DT (1981a) Effects of light on root nodulation and elongation of seedlings in sterile culture of Bowenia serrulata. Phytomorphology 31:121–123

    Google Scholar 

  • Webb DT (1981 b) Effects of light quality on root elongation and nodulation of Zamia floridana DC. seedlings in sterile culture. Z Pflanzenphysiol 104:253–258

    Google Scholar 

  • Webb DT (1982a) Effects of light intensity on root growth and nodulation of Zamia floridana embryos in sterile culture. Phytomorphology 32:81–84

    Google Scholar 

  • Webb DT (1982b) Importance of the megagametophyte and cotyledons for root growth of Zamia floridana DC. embryos in vitro. Z Pflanzenphysiol 106:37–42

    Google Scholar 

  • Webb DT (1982c) Effects of light on root growth, nodulation, and apogeotropism of Zamia pumila L. seedlings in sterile culture. Am J Bot 69:298–305

    Article  Google Scholar 

  • Webb DT (1982d) Light induced callus formation and root growth inhibition of Dioon edule Lindl. seedlings in sterile culture. Z Pflanzenphysiol 106:223–228

    Google Scholar 

  • Webb DT (1983 a) Developmental anatomy of light-induced root nodulation by Zamia pumila L. seedlings in sterile culture. Am J Bot 70:1109–1117

    Article  Google Scholar 

  • Webb DT (1983 b) Nodulation in light-and dark-grown Macrozamia communis L. Johnson seedlings in sterile culture. Ann Bot (London) 52:543–547

    Google Scholar 

  • Webb DT (1984) Developmental anatomy and histochemistry of light-induced callus formation by Dioon edule (Zamiaceae) seedling roots in vitro. Am J Bot 71:65–68

    Article  Google Scholar 

  • Webb DT, De Jesus S (1982) Root nodulation in embryos of Macrozamia diplomera in sterile culture. Phytomorphology 32:253–256

    Google Scholar 

  • Webb DT, Slone JH (1987) Anatomy of Macrozamia communis lateral roots and root nodules formed in vitro, studied with light and scanning electron microscopy. Am J Bot 74:1625–1643

    Article  Google Scholar 

  • Webb DT, Rivera MS, Straszak E, Matos J (1983) Callus initiation and organized development from Zamia pumila explants. Ann Bot (London) 51:711–717

    Google Scholar 

  • Webb DT, Nevarez M, De Jesus S (1984) Further in vitro studies of light-induced root nodulation in the cycadales. Environ Exp Bot 24:37–44

    Article  Google Scholar 

  • White PR (1943) A handbook of plant tissue culture. Cattell, Lancaster, Penn

    Google Scholar 

  • Whitelock LM (1978) The twilight of the cycads. Garden. (Sept Oct). Botanical garden, New York

    Google Scholar 

  • Whiting MG (1963) Toxicity of cycads. Econ Bot 17:270–302

    Article  Google Scholar 

  • Witte WJ (1977) Storage and germination of Zamia seed. Proc Fla State Hortic Soc 90:89–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Webb, D.T., Osborne, R. (1989). Cycads. In: Bajaj, Y.P.S. (eds) Trees II. Biotechnology in Agriculture and Forestry, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61535-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61535-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64862-5

  • Online ISBN: 978-3-642-61535-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics