Numerical Integration in Density Functional Methods with Linear Combination of Atomic Orbitals

  • Mauro Causà
Part of the Lecture Notes in Chemistry book series (LNC, volume 67)


The generalization of Becke’s numerical integration scheme to periodic functions is presented, which allows the LCAO-Kohn-Sham equations for crystals to be solved efficiently. The computational implementation of the scheme and its calibration are briefly discussed.

Key words

Numerical Integration of Periodic Functions — Density Functional Theory (DFT)—LCAO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.L. Cohen, in Structure and Bonding in Crystals, Vol.1 (M. O’Keeffe and A. Navrotsky, eds), Academic, New York, p. 25 (1981).Google Scholar
  2. 2.
    A. Zunger, in Structure and Bonding in Crystals, Vol.1 (M. O’Keeffe and A. Navrotsky, eds), Academic, New York, p. 73 (1981).Google Scholar
  3. 3.
    O.K. Andersen, Phys. Eev. B 12, 3060 (1975).CrossRefGoogle Scholar
  4. 4.
    T. Ziegler, Chem. Rev, 91, 651 (1991).CrossRefGoogle Scholar
  5. 5.
    B.G Johnson, P.M.W. Gill, and J.A. Pople, J. Chem. Phys. 98 5612 (1992).CrossRefGoogle Scholar
  6. 6.
    J. Andzeim and E. Wimmer, J. Chem. Phys, 96, 1280 (1992).CrossRefGoogle Scholar
  7. 7.
    P. Durand and J.C. Barthelat, Chem. Phys Lett. 27, 191 (1974).CrossRefGoogle Scholar
  8. 8.
    A.D. Becke, J. Chem. Phys. 88, 2547 (1988).CrossRefGoogle Scholar
  9. 9.
    P.W.M. Gill, B.G. Johnson, J.A. Pople, and M.J. Frisch, Chem. Phys. Lett. 197, 499 (1992)CrossRefGoogle Scholar
  10. 10.
    A.D. Becke, J. Chem. Phys 96, 2155 (1992).CrossRefGoogle Scholar
  11. 11.
    C. Pisani, E. Dovesi and C. Roetti, Hartree-Fock Ab Initio Treatment of Crystalline Systems, Lecture Notes in Chem. Vol. 48, Springer, Berlin (1988).Google Scholar
  12. 12.
    R. Dovesi, C. Pisani, C. Roetti, M. Causà, and V.R. Saunders, CRYSTAL 88, Program No. 577, QCPE, Indiana University, Bloomington, IN (1989); R. Dovesi, V.R. Saunders and C. Roetti, CRYSTAL92 User Documentation, University of Torino, Torino (1992).Google Scholar
  13. 13.
    M.Causa and A. Zupan, Chem. Phys. Lett. 220, 145 (1994).CrossRefGoogle Scholar
  14. 14.
    M.Causa and A. Zupan, Int. J. Quantum Chem. S28, 633 (1994).CrossRefGoogle Scholar
  15. 15.
    A. Zupan and M. Causa, Int. J. Quantum Chem, S32, 446 (1995).Google Scholar
  16. 16.
    F.E. Harris and H.J. Monkhorst, Phys. Rev. Lett. 23, 1026 (1969).CrossRefGoogle Scholar
  17. 17.
    A. Savin, Int. J. Quantum Chem. S22, 457 (1988).Google Scholar
  18. 18.
    G. Stroud, Approximate Calculations of Multiple Integrals, Prentice-Hall (1971)Google Scholar
  19. 19.
    V.I. Lebedev, Zh. Vychisl. Mat. Fiz. 16, 293 (1976).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Mauro Causà
    • 1
  1. 1.Department of Inorganic, Physical and Materials ChemistryUniversity of TorinoTorinoItaly

Personalised recommendations