Advertisement

Reciprocal Space Integration and Special-Point Techniques

  • Andrea Dal Corso
Part of the Lecture Notes in Chemistry book series (LNC, volume 67)

Summary

We describe the special-point technique to integrate a periodic function over the BZ. The method of Monkhorst and Pack for special-point generation is explained and an example of its application to the fcc lattice is discussed. Several convergence tests performed with the PWSCF code are presented. The problem of sampling the Fermi surface in metallic systems is briefly discussed.

Key words

Reciprocal Space Techniques Special Points Fermi Surface Sampling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kohn and L.J. Sham, Phys. Rev. 140, 1133 (1965).CrossRefGoogle Scholar
  2. 2.
    See the chapter “The PWSCF code” this issue.Google Scholar
  3. 3.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipies” ( Cambridge University Press, Cambridge, 1986 ).Google Scholar
  4. 4.
    For a comprehensive review see R.A. Evarestov and V.P. Smirnov, Phys. Stat. Sol. (b) 119, 9 (1993).CrossRefGoogle Scholar
  5. 5.
    A. Baldereschi, Phys. Rev. B 7, 5212 (1973).CrossRefGoogle Scholar
  6. 6.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  7. 7.
    G.F. Koster, in Solid State Physics, edited by H. Ehrenreich, F. Seitz and D. Turnbull, vol. 5 ( Academic, New York, 1957 ).Google Scholar
  8. 8.
    D.J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747 (1973).CrossRefGoogle Scholar
  9. 9.
    F. Bassani and G. Pastori Parravicini, Electronic states and optical transitions in solids ( Pergamon Press, Oxford, 1975 ).Google Scholar
  10. 10.
    C.-L. Fu and K.M. Ho, Phys. Rev. B 28, 6687 (1983).CrossRefGoogle Scholar
  11. 11.
    A. Devita, Ph.D. Thesis, Keele University (1992).Google Scholar
  12. 12.
    C. Elsässer, M. Fähnle, C.T. Chan, and K.M. Ho, Phys. Rev. B 49, 13 975 (1994).Google Scholar
  13. 13.
    M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).CrossRefGoogle Scholar
  14. 14.
    G. Lehmann and M. Taut, Phys. Status Solid 54, 469 (1962).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Andrea Dal Corso
    • 1
  1. 1.Institut Romand de Recherche Numérique en Physique des Matériaux (IRRMA), IN-EcublensLausanneSwitzerland

Personalised recommendations