Advertisement

Macroscopic Dielectric Polarization: Hartree-Fock Theory

  • Raffaele Resta
Part of the Lecture Notes in Chemistry book series (LNC, volume 67)

Summary

A modern theory of macroscopic polarization in crystalline dielectrics has been recently founded. Within this theory, polarization occurs as a geometric quantum phase of the crystalline Bloch orbitals. This modern theory only concerns polarization differences in zero electric field and cope, therefore, with lattice dynamics, piezoelectricity and ferroelectricity. So far, the geometric-phase theory has been formulated and implemented within the density functional theory of Kohn and Sham. In this Chapter I outline the whole theory, focussing on a formulation within the Hartree-Fock framework and discussing a possible implementation in a localized basis set. The final section of this Chapter addresses a somewhat separate issue, namely the computation of a macroscopic dielectric constant from linear-response theory, in a periodic solid.

Key words

Polarization Dielectrics Infrared charges Piezoelectricity Ferroelectricity Dielectric permittivity Hartree-Fock Electronic states Geometric phases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media ( Pergamon Press, Oxford, 1984 ).Google Scholar
  2. 2.
    C. Kittel, Introduction to Solid State Physics, 6th. edition ( Wiley, New York, 1986 ).Google Scholar
  3. 3.
    N.W. Ashcroft and N.D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976 ).Google Scholar
  4. 4.
    W.E. Pickett, Computer Phys. Reports 9, 115 (1989).CrossRefGoogle Scholar
  5. 5.
    C. Pisani, R. Dovesi, and C. Roetti, Hartree-Fock Ab-initio Treatment of Crystalline Systems ( Springer, Berlin, 1988 ).Google Scholar
  6. 6.
    R.M. Martin, Phys. Rev. B 9, 1998 (1974).Google Scholar
  7. 7.
    R. Resta, Ferroelectrics 136, 51 (1992).CrossRefGoogle Scholar
  8. 8.
    R.D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).CrossRefGoogle Scholar
  9. 9.
    R. Resta, Europhys. Lett. 22, 133 (1993).CrossRefGoogle Scholar
  10. 10.
    R. Resta, Rev. Mod. Phys. 66, 899 (1994).CrossRefGoogle Scholar
  11. 11.
    R. Resta, II Nuovo Saggiatore 9 (5/6), 79 (1993).Google Scholar
  12. 12.
    R.M. Martin, Phys. Rev. B 5, 1607 (1972).CrossRefGoogle Scholar
  13. 13.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices ( Oxford University Press, Oxford, 1954 ).Google Scholar
  14. 14.
    M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford,Google Scholar
  15. 15.
    R.W. Nunes and D. Vanderbilt, Phys. Rev. Lett. 73, 712 (1994).CrossRefGoogle Scholar
  16. 16.
    A. Dal Corso and F. Mauri, Phys. Rev. B 50, 5756 (1994).CrossRefGoogle Scholar
  17. 17.
    Geometric Phases in Physics, edited by A. Shapere and F. Wilczek (World Scientific, Singapore, 1989).Google Scholar
  18. 18.
    Theory of the Inhomogeneous Electron Gas, edited by S.Lundqvist and N.H. March (Plenum, New York, 1983).Google Scholar
  19. 19.
    R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).CrossRefGoogle Scholar
  20. 20.
    G. Ortiz and R.M. Martin, Phys. Rev. B 49, 14202 (1994).CrossRefGoogle Scholar
  21. 21.
    R. McWeeny, Methods of Molecular Quantum Mechanics, Second Edition ( Academic, London, 1992 ).Google Scholar
  22. 22.
    R. Pick, M.H. Cohen, and R.M. Martin, Phys. Rev. B 1, 910 (1970).CrossRefGoogle Scholar
  23. 23.
    K. Huang, Proc. Roy. Soc. A203, 178 (1950).CrossRefGoogle Scholar
  24. 24.
    R.D. Amos, in: Ab-initio Methods in Quantum Chemistry - /, edited by K.P. Lawley ( Wiley, New York, 1987 ), p. 99.Google Scholar
  25. 25.
    P. Lazzeretti and R. Zanasi, J. Chem. Phys. 83, 1218 (1985).CrossRefGoogle Scholar
  26. 26.
    D.J. Thouless, Phys. Rev. B 27, 6803 (1983).CrossRefGoogle Scholar
  27. 27.
    Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959); reprinted in: Geometric Phases in Physics, edited by A. Shapere and F. Wilczek ( World Scientific, Singapore, 1989 ), p. 104.Google Scholar
  28. 28.
    J. Zak, Phys. Rev. Lett. 62, 2747 (1989).CrossRefGoogle Scholar
  29. 29.
    L.I. Schiff, Quantum mechanics ( McGraw-Hill, Singapore, 1968 ).Google Scholar
  30. 30.
    O.K. Andersen, O. Jepsenand M. Sob, in: Electronic Band Structure and Its Applications, edited by M. Yussouf ( Springer, Berlin, 1987 ), p. 1CrossRefGoogle Scholar
  31. 31.
    H.J.F. Jansen and A.J. FVeeman, Phys. Rev. B. 30, 561 (1984).CrossRefGoogle Scholar
  32. 32.
    R. Nenciu, Rev. Mod. Phys. 63, 91 (1991).CrossRefGoogle Scholar
  33. 33.
    S. Baroni and R. Resta, Phys. Rev. B 33, 7017 (1986).CrossRefGoogle Scholar
  34. 34.
    A. Dal Corso, S. Baroni, and R. Resta, Phys. Rev. B 49, 5323 (1994).CrossRefGoogle Scholar
  35. 35.
    P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B 43, 7231 (1991).CrossRefGoogle Scholar
  36. 36.
    S. de Gironcoli, S. Baroni, and R. Resta, Phys. Rev. Lett. 62, 2853 (1989).CrossRefGoogle Scholar
  37. 37.
    A. Dalgarno, Adv. Phys. 11, 281 (1962).CrossRefGoogle Scholar
  38. 38.
    Rici Yu and H. Krakauer, Phys. Rev. B 49, 4467 (1994); Cheng-Zhang Wang, Rici Yu, and H. Krakauer, Phys. Rev. Lett. 72, 368 (1994).CrossRefGoogle Scholar
  39. 39.
    F. Aryasetiawan and O. Gunnarsson, Phys. Rev. B 49, 16214 (1994).CrossRefGoogle Scholar
  40. 40.
    K. Kunc and R. Resta, Phys. Rev. Lett. 51, 686 (1983); R. Resta and K. Kunc, Phys. Rev. B 34, 7146 (1986).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Raffaele Resta
    • 1
  1. 1.Istituto Nazionale di Fisica della Materia (INFM) and Dipartimento di Fisica Teoricadell’Università di TriesteTriesteItaly

Personalised recommendations