Advertisement

Lattice Dynamics and Thermodynamic Properties

  • Michele Catti
Part of the Lecture Notes in Chemistry book series (LNC, volume 67)

Summary

The dynamical properties of atoms in crystalline solids are reviewed, in the framework of the quasi-harmonic approximation for the Born-Oppenheimer potential energy hypersurface. Model interatomic potential functions, fitted to either theoretical or experimental data, are discussed. Methods and results of calculations of phonon spectra and thermodynamic functions, both by use of model potentials and of ab initio approaches, are presented.

Key words

Interatomic potentials Born-Oppenheimer surface Quasiharmonic approximation Phonon spectra Thermodynamics of crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).CrossRefGoogle Scholar
  2. 2.
    S. Nose, Mol. Phys. 52, 255 (1984).CrossRefGoogle Scholar
  3. 3.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattice, Clarendon Press, Oxford (1954).Google Scholar
  4. 4.
    R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).CrossRefGoogle Scholar
  5. 5.
    M.P. Tosi, Solid State Phys. 16, 1 (1964).CrossRefGoogle Scholar
  6. 6.
    C.R.A. Catlow and A.N. Cormack, Inter. Rev. Phys. Chem. 6, 227 (1987).CrossRefGoogle Scholar
  7. 7.
    B.G. Dick and A.W. Overhauser, Phys. Rev. 112, 90 (1958).CrossRefGoogle Scholar
  8. 8.
    V. Nusslein and U. Schroeder, Phys. Status Solidi 21, 309 (1967).CrossRefGoogle Scholar
  9. 9.
    K. Fischer, Phys. Status Solidi b 66, 295 (1974).CrossRefGoogle Scholar
  10. 10.
    C.R.A. Catlow and W.C. Mackrodt, Computer Simulations of Solids. Lecture Notes in Physics, Vol. 166. Springer, Berlin (1982).Google Scholar
  11. 11.
    M. Catti, Acta Crystallogr. A 45, 20 (1989).CrossRefGoogle Scholar
  12. 12.
    G.D. Price and S.C. Parker, Phys. Chem. Minerals 10, 209 (1984).CrossRefGoogle Scholar
  13. 13.
    M. Catti, Phys.Chem. Minerals 16, 582 (1989).CrossRefGoogle Scholar
  14. 14.
    A. Pavese, M. Catti, G.D. Price and R.A. Jackson, Phys. Chem. Minerals 19, 80 (1992).CrossRefGoogle Scholar
  15. 15.
    A.C. Lasaga and G.V. Gibbs, Phys. Chem. Minerals 17, 485 (1991).CrossRefGoogle Scholar
  16. 16.
    S. Tsuneyuki, M. Tsukada, H. Aoki, Y. Matsui. Phys. Rev. Lett. 7, 869 (1988).CrossRefGoogle Scholar
  17. 17.
    B.W.H. van Beest, G.J. Kramer, R.A. van Santen. Phys. Rev. Lett. 16, 1955 (1990).CrossRefGoogle Scholar
  18. 18.
    J. Purton, R. Jones, C.R.A. Catlow, M. Leslie. Phys. Chem. Minerals 19, 392 (1993).CrossRefGoogle Scholar
  19. 19.
    M.T. Dove, Introduction to Lattice Dynamics, Cambridge University Press (1993).Google Scholar
  20. 20.
    M.M. Elcombe and A.W. Pryor, J. Phys. C: Solid State Phys. 3, 492 (1970).CrossRefGoogle Scholar
  21. 21.
    M. Catti, R. Dovesi, A. Pavese and V.R. Saunders, J. Phys.: Condens. Matter 3, 4151 (1991).CrossRefGoogle Scholar
  22. 22.
    P. Giannozzi, S. de Gironcoli, P. Pavone and S. Baroni, Phys. Rev. B 43, 7231 (1991).CrossRefGoogle Scholar
  23. 23.
    S.C. Parker and G.D. Price, Adv. Solid State Chem. 1, 295 (1989).Google Scholar
  24. 24.
    M. Catti, A. Pavese and G.D. Price, Phys.Chem. Minerals 19, 472 (1993).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Michele Catti
    • 1
  1. 1.Dipartimento di Chimica Fisica ed ElettrochimicaUniversità di MilanoMilanoItaly

Personalised recommendations