Crystal Lattices and Crystal Symmetry

  • Davide Viterbo
Part of the Lecture Notes in Chemistry book series (LNC, volume 67)


The basic concepts of the geometrical representation of crystalline solids and of their symmetry are outlined. The combination of periodic translational symmetry (describing crystal lattices) with other symmetry elements (rotation axes, mirror planes, inversion centers, etc.) is described as the basis of the space group theory.

Key words

Crystal Lattice Translational Symmetry Unit Cell — Crystal Structure Crystallographic Rows and Planes Metric Tensor Reciprocal Lattice Symmetry Operators Symmetry Elements Point Groups Symmetry Classes Laue Classes Crystal Systems Bravais Lattices Space Groups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Tables for Crystallography, Vol A, Space group symmetry, (T. Hahn, ed.), Kluwer, Dordrecht (1992).Google Scholar
  2. 2.
    C.J. Bradley and A.P. Cracknell, The Mathematical Theory of Symmetry in Solids. Representation theory for Point and Space groups, Clarendon Press, Oxford (1972).Google Scholar
  3. 3.
    E.H. Lockwood and R.H. MacMillan, Geometric Symmetry, Cambridge University Press (1978).Google Scholar
  4. 4.
    B.K. Vainshtein, Modern Crystallography I: Symmetry of Crystals, Methods of Structural Crystallography, Springer, Berlin (1981).Google Scholar
  5. 5.
    C. Giacovazzo, H.L. Monaco, D. Viterbo, F. Scordari, G. Gilli, G. Zanotti and M. Catti, Fundamentals of Crystallography, Oxford University Press (1992).Google Scholar
  6. 6.
    G. Rigault, Introduzione alia Cristallografia, Levrotto-Bella, Torino (1983).Google Scholar
  7. 7.
    E. Prince, Mathematical Techniques in Crystallography and Materials Science, Springer-Verlag, Berlin (1994).Google Scholar
  8. 8.
    D.E. Sands, Vectors and Tensors in Crystallography, Addison-Wesley, Reading MA (1982).Google Scholar
  9. 9.
    T. Hahn and H. Wondratschek, Symmetry of Crystals, Heron Press, Sofia (1994)Google Scholar
  10. 10.
    D. Schattschneider, Visions of symmetry. Notebooks, periodic drawings, and related works of M.C. Escher, W.H. Freeman, New York (1990).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Davide Viterbo
    • 1
  1. 1.Department of Inorganic, Physical and Materials ChemistryUniversity of TorinoTorinoItaly

Personalised recommendations