Sulfur(IV) Oxidation

  • P. Amels
  • H. Elias
  • U. Götz
  • U. Steingens
  • K. J. Wannowius
Part of the Transport and Chemical Transformation of Pollutants in the Troposphere book series (3373, volume 2)

Summary

The kinetics of the decomposition of aqueous peroxonitric acid, O2 NOOH, have been studied as a function of pH in the range pH = 0-9. In addition to literature studies on the stability of peroxonitric acid solutions two more reactions have been measured. They are assigned to the formation and the decay of a short-lived intermediate. The composition of the intermediate is discussed. A peroxo-species containing two nitrogens in different oxidation states (+III and +V) is favoured.

The kinetics of the oxidation of S(IV) by peroxonitric acid as well as by the intermediate have been studied as a function of pH in the range pH = 0-8.2 (T = 285 K, I = 1.0 M NaC104).

Keywords

Hydrogen Peroxide Dioxide Sulfide Bromide Ozone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kenley, R. A.; Trevor, P. L.; Lan, B. Y. J. Am. chem. Soc. 103(1981) 2203–2206.CrossRefGoogle Scholar
  2. 2.
    Lammel, G.; Perner, D.; Wameck, P. J. Phys. Chem. 94 (1990) 6141–6144.CrossRefGoogle Scholar
  3. 3.
    Loegager, T.; Sehested, K. J. Phys. Chem. 97 (1993) 10047.CrossRefGoogle Scholar
  4. 4.
    Appelman, E. H.; Gosztola, D. J. Inorg. Chem. 34(1995) 787–789.CrossRefGoogle Scholar
  5. 5.
    Drexler, C; Elias, H.; Fecher, B.; Wannowius, K. J. Fresenius J. Anal. Chem. 340(1991) 605–615.CrossRefGoogle Scholar
  6. 6.
    Drexler, C; Elias, H.; Fecher, B.; Wannowius, K. J. Ber. Bunsenges. Phys. Chem. 96(1992) 481–485.CrossRefGoogle Scholar
  7. 7.
    Elias, H.; Götz, U.; Wannowius, K. J. Atmos. Environ. 28 (1994) 439–448.CrossRefGoogle Scholar
  8. 8.
    Finnlayson-Pitts, B. J.; Pitts, J. N. jr. Atmosheric Chemistry: Fundamentals and Experimental Techniques, J. Wiley and Sons, New York.Google Scholar
  9. 9.
    Barlow, S.; Buxton, G. V.; Salmon, G. A. in: Proc Symp’ 94 pp. 1005–1009.Google Scholar
  10. 10.
    Rinsland, C. P.; Zander, R.; Farmer, C. B.; Norton, R. H.; Brown, L. R.; Rössel, J. M.; Park, J. H. Geophys. Res. Lett. 13 (1986) 761–764.CrossRefGoogle Scholar
  11. 11.
    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, F. H.; Murcray, D. G. J. Geophys. Res. 94 (1989) 14945–14955.CrossRefGoogle Scholar

References

  1. 1.
    J. Lagrange, C. Pallarès, G. Wenger, P. Lagrange: Atmos. Environ. 27A (1993) 129.Google Scholar
  2. 2.
    J. Lagrange, C. Pallarès, P. Lagrange: J. Geophys. Res. 99 (1994) 14595.CrossRefGoogle Scholar
  3. 3.
    S. A. Penkett, B. M. R. Jones, K. A. Brice, A. E. J. Eggleton: Atmos. Environ. 13 (1979) 123.CrossRefGoogle Scholar
  4. 4.
    H. G. Maahs: J. Geophys. Res. 88 (1983) 10721.CrossRefGoogle Scholar
  5. 5.
    M. R. Hoffmann: Atmos. Environ. 20 (1986) 1145.CrossRefGoogle Scholar
  6. 6.
    J. Hoigné, H. Bader, W. R. Haag, J. Staehelin: Water Res. 19 (1985) 993.CrossRefGoogle Scholar
  7. 7.
    M. W. Lister, P. Rosenblum: Can. J. Chem. 41 (1963) 3013.CrossRefGoogle Scholar
  8. 8.
    K. D. Fogelman, D. M. Walker, D. W. Margeram: Inorg. Chem. 28 (1989) 986.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • P. Amels
    • 1
  • H. Elias
    • 1
  • U. Götz
    • 1
  • U. Steingens
    • 1
  • K. J. Wannowius
    • 1
  1. 1.Institut för Anorganische ChemieTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations