Skip to main content

Die Bedeutung von Biofilmen und Flocken für die Nitrifikation in aquatischen Biotopen

  • Chapter
Ökologie der Abwasserorganismen
  • 566 Accesses

Zusammenfassung

Biofilme und Flocken gelten neben Sedimenten als Zentren des mikrobiellen Stoffumsatzes in aquatischen Biotopen. Für ihre Entstehung sind extrazelluläre polymere Substanzen (EPS), die von zahlreichen Mikroorganismen in erheblichen Mengen ausgeschieden werden, von großer Bedeutung. Sie dienen als Kittsubstanzen und führen zur Bildung schleimiger Aggregate, die sich leicht an Oberfächen anheften. Durch Sekundärbesiedlung dieser Matrix kommt es schnell zur Ausbildung vielfältiger, mikrobieller Lebensgemeinschaften, die in der Lage sind, eine breite Palette von Substraten in komplexen Metabiosen sehr effizient umzusetzen. Ein klassisches Beispiel dafür, wie die Leistungsfähigkeit solcher Lebensgemeinschaften praktisch genutzt werden kann, ist der Einsatz natürlicher oder künstlicher Biofilme bzw. Flocken in der Abwasseraufbereitungtechnik. Nitrifizierende Bakterien spielen dabei schon seit langer Zeit eine wichtige Rolle. Die an diesem Prozeß beteiligten Organismen sind in der Lage, das teilweise in großen Mengen anfallende Ammonium zu beseitigen, und sie leisten durch die Umwandlung des toxischen Ammoniaks in Nitrat auch einen wichtigen Beitrag zur möglichen Stickstoffeliminierung durch Denitrifikation. In den folgenden Kapiteln werden einige Aspekte der Nitrifikation in Biofilmen und Flocken näher betrachtet. Dabei wird in erster Linie auf die zur Zeit vorliegenden Erkenntnisse über natürliche Systeme eingegangen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Suzuki I (1984) Oxidation of inorganic nitrogen compounds. In: Crawford RL, Hanson RS (eds) Microbial growth on C1 compounds, American Society for Microbiology, Washington, D. C., pp 42–52

    Google Scholar 

  2. Woese CR, Weisburg WG, Paster BJ, Tanner RS, Krieg NR, Koops HP, Harms H, Stackebrandt E (1984) The phylogeny of the purple bacteria: the beta subdivision. Syst Appl Microbiol 5:327–336

    CAS  Google Scholar 

  3. Woese CR, Weisburg WG, Hahn CM, Paster BJ, Zablen LB, Lewis BJ, Macke TJ, Ludwig W, Stackebrandt E (1985) The phylogeny of the purple bacteria: the gamma subdivision. Syst Appl Microbiol 6:25–33

    CAS  Google Scholar 

  4. Head IM, Hiorns WD, Embley TM, Marthy AJ (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol 139:1147–1153

    CAS  Google Scholar 

  5. Wood PM (1986) Nitrification as a bacterial energy source. In: Prosser JI (ed) Nitrification. Special publications of the Society for General Microbiology, Vol 20, IRL Press, Oxford, pp 39–62

    Google Scholar 

  6. Smith AJ, Hoare DS (1977) Specialist phototrophs, lithotrophs, and methylotrophs: unity among a diversity of procaryotes. Bact Rev 41:419–448

    CAS  Google Scholar 

  7. Goreau TW, Kaplan WA, Wofsy SC, Mlroy MB, Valois FW, Watson SW (1980) Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl Environ Microbiol 40:526–532

    CAS  Google Scholar 

  8. Bock E, Schmidt I, Stüven R, Zart D (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch Microbiol 163:16–20

    Article  CAS  Google Scholar 

  9. Koops HP, Möller UC (1992) The lithotrophic ammonia-oxidizing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The Procaryotes, Vol III, Springer Verlag, New York, pp 2625–2637

    Google Scholar 

  10. Watson SW, Mandel M (1971) Comparison of morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria. J Bacteriol 107:563–569

    CAS  Google Scholar 

  11. Koops HP, Böttcher B, Möller UC, Pommerening-Röser A, Stehr G (1991) Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. J Gen Microbiol 137:1689–1699

    CAS  Google Scholar 

  12. Teske A, Alm E, Regan JM, Toze S, Rittmann BE, Stahl D (1994) Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J Bacteriol 176:6623–6630

    CAS  Google Scholar 

  13. Freitag A, Bock E (1990) Energy conservation in Nitrobacter. FEMS Microbiol Lett 66: 157–162

    Article  CAS  Google Scholar 

  14. Bock E, Koops HP (1992) The genus Nitrobacter and related genera. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The Procaryotes, Vol III, Springer Verlag, New York, pp 2302–2309

    Google Scholar 

  15. Focht DD, Verstraete W (1977) Biochemical ecology of nitrification and denitrification. Adv Microcol 1:135–214

    CAS  Google Scholar 

  16. Castagnetti D, Hollocher, TC (1984) Heterotrophic nitrification among denitrifiers. Appl Environ Microbiol 47:620–623

    Google Scholar 

  17. Kuenen JG, Robertson LA (1987) Ecology of nitrification and denitrification. In: Cole JA, Ferguson S (eds) The nitrogen and sulfur cycles, Cambridge University Press, Cambridge, pp 162–218

    Google Scholar 

  18. Hooijmans CM, Geraats SGM, van Newil EWJ, Robertson LA, Heijnen JJ, Luyben KCM (1990) Determination of growth and coupled nitrification/denitrification by immobilized Thiosphaera pantotropha using measurement and modelling of oxygen profiles. Biotechnol Bioeng 36:931–939

    Article  CAS  Google Scholar 

  19. Both GJ, Gerards S, Laanbroek HJ (1992) The occurrence of chemolitho-autotrophic nitrifiers in water-saturated grassland soil. Microb Ecol 23:15–26

    Article  Google Scholar 

  20. Belser LW, Mays EL (1982) Use of nitrifier activity measurements to estimate the efficiency of viable nitrifier counts in soil and sediments. Appl Environ Microbiol 43:945–948

    CAS  Google Scholar 

  21. Belser LW, Schmidt EL (1978) Serological diversity within a terrestrial ammonia-oxidizing population. Appl Environ Microbiol 36:589–593

    CAS  Google Scholar 

  22. Fliermans CB, Bohlool BB, Schmidt EL (1974): Autecological study of the chemoautotroph Nitrobacter by immunofluorescence. Appl Environ Microbiol 27:124–129

    CAS  Google Scholar 

  23. Smorczewski WT, Schmidt EL (1991) Number, activity, and diversity of autotrophic ammonia-oxidizing bacteria in a freshwater, eutrophic lake sediment. Can J Microbiol 37:828–833

    Article  Google Scholar 

  24. Szwerinski H, Gaiser S, Bardtke D (1985) Immunofluorescence for the quantitative determination of nitrifying bacteria: interference of the test in biofilm reactors. Appl Microbiol Biotechnol 21:125–128

    Article  CAS  Google Scholar 

  25. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. In: Barnes M (ed) Oceanogr. Mar Biol Annu Rev, Vol 28, Aberdeen University Press, pp 73–153

    Google Scholar 

  26. Ferris FG, Schultze S, Witten TC, Fyfe WS, Beveridge TJ (1989) Metal interactions with microbial biofilms in acid and neutral environments. Appl Environ Microbiol 55: 1249–1257

    CAS  Google Scholar 

  27. Starkey RL (1948) Family I.Nitrobacteriaceae Buchanan. In: Breed RS, Murray EGD, Hitchens AP (eds) Bergey’s Manual of Determinative Bacteriology, The Williams & Wilkins Co, Baltimore, pp 69–81

    Google Scholar 

  28. Watson SW (1971) Taxonomic considerations of the family Nitrobacteraceae Buchanan. Request for opinions. Int J Syst Bacteriol 21:254–270

    Article  Google Scholar 

  29. Suwa Y, Imamura Y, Suzuki T, Tashiro T, Urushigawa, Y (1994) Ammonia-oxidizing bacteria with different sensitivities to (NH4)2S04 in activated sludges. Wat Res 28:1523–1532

    Article  CAS  Google Scholar 

  30. Stehr G, Zörner S, Böttcher B, Koops HP (1995) Exopolymers: an ecological characteristic of a floe-attached, ammonia-oxidizing bacterium. Microb Ecol 30:115–126

    Article  CAS  Google Scholar 

  31. Rudd T, Sterrit RM, Lester JM (1983) Mass balance of heavy metal uptake by encapsulated cultures of Klebsiella aerogenes. Microb Ecol 9:261–272

    Article  CAS  Google Scholar 

  32. Allison SM, Prosser JI (1993) Ammonia oxidation at low by attached populations of nitrifying bacteria. Soil Bio. Biochem 25:935–941

    Article  CAS  Google Scholar 

  33. Tijhuis L, van Loosdrecht MCM, Heijnen JJ (1992) Nitrification with biofilms on small suspended particles in airlift reactors. Wat Sei Tech 26:2207–2211

    CAS  Google Scholar 

  34. Hunik JH, van den Hoogen MP, De Boer W, Smit M, Tramper J (1993) Quantitative determination of the spatial distribution of Nitrosomonas europaea andNitrobacter agilis cells immobilized in K-Carrageen gel beads by a specific fluorescent-antibody labelling technique. Appl Environ Microbiol 59:1951–1954

    CAS  Google Scholar 

  35. Painter HA (1986) Nitrification in the treatment of sewage and waste-waters. In: Prosser JI (ed) Nitrification. Special publications of the Society for General Microbiology, Vol 20, IRL Press, Oxford, p 185–211

    Google Scholar 

  36. Watanabe Y, Masuda S, Ishiguro M (1992) Simultaneous nitrification and denitrification in micro-aerobic biofilms. Wat Sei Tech 26:511–522

    CAS  Google Scholar 

  37. Den Blanken JG (1993) Effects of phenol and sludge load on adaptation and nitrification. Environ Tech 14:831–839

    Article  Google Scholar 

  38. ARGE (1987) Arbeitsgemeinschaft für die Reinhaltung der Elbe, Gewässergütebericht Elbe 1984/1985, Hamburg, Wassergütestelle

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koops, HP., Böttcher, B., Dittberner, P., Rath, G., Stehr, G., Zörner, S. (1996). Die Bedeutung von Biofilmen und Flocken für die Nitrifikation in aquatischen Biotopen. In: Ökologie der Abwasserorganismen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61423-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61423-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64838-0

  • Online ISBN: 978-3-642-61423-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics