Skip to main content

Intracellular Transport of Brush-Border and Lysosomal Enzymes in the Human Enterocyte

  • Chapter
Biomembranes

Abstract

The mechanisms underlying the biosynthesis, intracellular transport, and sorting of proteins destined for extra- and intracellular use have been extensively studied in polarized epithelial cells during the last few years. Much of our understanding about these mechanisms arose from studies on the intracellular pathways taken by newly synthesized viral membrane glycoproteins in cultured epithelial cells (K. Simons and Fuller 1985, N.L. Simons et al. 1985). However, little information is available about the synthesis and transport of endogenous glycoproteins (Danielsen et al. 1984). To study these processes the intestinal epithelial cell (enterocyte) is an attractive model for a number of reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpers DH, Tedesco FJ (1975) The possible role of pancreatic proteases in the turnover of intestinal brush border proteins. Biochim Biophys Acta 401:28–40.

    Article  PubMed  CAS  Google Scholar 

  • Bennett G, LeBlond CP (1971) Passage of fucose-3H label from the Golgi apparatus into dense and multivesicular bodies in the duodenal columnar cells and hepatocytes of the rat. J Cell Biol 51:875–881.

    Article  PubMed  CAS  Google Scholar 

  • Blok J, Ginsel LA, Mulder-Stapel AA, Onderwater JJM, Daems WTh (1981a) The effect of colchicine on the intracellular transport of 3H-fucose labelled glycoproteins in the absorptive cells of cultured human small-intestinal tissue. Cell Tissue Res 215: 1–12.

    Google Scholar 

  • Blok J, Mulder-Stapel AA, Ginsel LA, Daems WTh (1981b) The effect of chloroquine on lysosomal function and cell-coat glycoprotein transport in the absorptive cells of cultured human small-intestinal tissue, Cell Tissue Res 218:227–251.

    Article  PubMed  CAS  Google Scholar 

  • Blok J, Mulder-Stapel AA, Ginsel LA, Daems WTh (1981c) Endocytosis in absorptive cells of cultured human small-intestinal tissue: horseradish peroxidase, lactoperoxidase and ferritin as markers, Cell Tissue Res 216:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Blok J, Fransen JAM, Ginsel LA (1984) Turnover of brush-border glycoproteins in human intestinal absorptive cells: do lysosomes have a regulatory function? Cell Biol Int Rep 8:993–1015.

    Article  PubMed  CAS  Google Scholar 

  • Brown WJ, Farquhar MG (1984) The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae. Cell 36:295–307.

    Article  PubMed  CAS  Google Scholar 

  • Crane RK (1977) Digestion and absorption: water-soluble organics. Int Rev Physiol 12:325–365.

    PubMed  CAS  Google Scholar 

  • Creek KF, Sly W (1984) The role of the phosphomannosyl receptor in the transport of acid hydrolases to lysosomes. In: Dingle JT, Dean RT, Sly W (eds) Lysosomes in biology and pathology. Elsevier, Amsterdam, pp 63–82.

    Google Scholar 

  • Daems WTh, Gemünd JJ van, Vio PMA, Willighagen RGJ, Tandt WR den (1973) The use of intestinal suction biopsy material for the study of lysosomal storage diseases, In: Hers HG, Hoof van H., (eds) Lysosomal storage diseases. Academic Press, London New York, pp 575–598.

    Google Scholar 

  • Danielsen EM, Cowell GM, Noren O, Sjöström H (1984) Biosynthesis of microvillar proteins. Biochem J 221:1–14.

    PubMed  CAS  Google Scholar 

  • Farquhar MG (1985) Progress in unraveling pathways of Golgi traffic, Annu Rev Cell Biol 1:447–488.

    Article  PubMed  CAS  Google Scholar 

  • Figura K von, Hasilik A (1986) Lysosomal enzymes and their receptors. Annu Rev Biochem 55:167–193.

    Article  Google Scholar 

  • Figura K von, Weber E (1978) An alternative hypothesis of cellular transport of lysosomal enzymes in fibroblasts. Biochem J 176:943–950.

    Google Scholar 

  • Fransen JAM, Ginsel LA, Hauri HP, Sterchi E, Blok J (1985) Immuno-electron-microscopical localization of a microvillus membrane disaccharidase in the human small-intestinal epithelium with monoclonal antibodies. Eur J Cell Biol 38:6–15.

    PubMed  CAS  Google Scholar 

  • Fransen JAM, Oude Elferink RPJ, Cambier PH, Klumperman J, Hilgers J, Ginsel LA, Tager JM (1987) Immunocytochemical demonstration of a precursor form of the lysosomal enzyme α-glucosidase in the brush-border of human intestinal epithelial cells. Submitted to J Cell Biol.

    Google Scholar 

  • Geuze HJ, Slot JW, Ley PA van der, Scheffer RCT (1981) Use of colloidal gold particles in double-labeling immunoelectron microscopy of ultrathin frozen sections. J Cell Biol 89:653–665.

    Article  PubMed  CAS  Google Scholar 

  • Geuze HJ, Slot JW, Strous GJAM, Lodish HF, Schwartz AL (1983) Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell 32:277–287.

    Article  PubMed  CAS  Google Scholar 

  • Geuze HJ, Slot JW, Strous GJAM, Hasilik A, Figura K von (1985) Possible pathways for lysosomal enzyme delivery. J Cell Biol 101:2253–2262.

    Article  PubMed  CAS  Google Scholar 

  • Ginsel LA, Daems WTh, Emeis JJ, Vio PMA, Gemünd JJ van (1973) Fine structure and silver-staining patterns of lysosome-like bodies in absorptive cells of the small intestine in normal children and children with a lysosomal storage disease. Virchows Arch B 13:119–144.

    CAS  Google Scholar 

  • Ginsel LA, Cambier PH, Daems WTh (1978) Fucosidosis and I-cell disease: a fine-structural and silver-staining study of abnormal inclusion bodies in small-intestinal cells. Virchows Archiv B 27:99–117.

    CAS  Google Scholar 

  • Ginsel LA, Onderwater JJM, Daems WTh (1979) Transport of radiolabelled glycoprotein to cell-surface and lysosome-like bodies of absorptive cells of cultured small-intestinal tissue from normal subjects and patients with a lysosomal storage disease. Virchows Arch B 30:245–273.

    Google Scholar 

  • Hasilik A, Neufeld EF (1980) Biosynthesis of lysosomal enzymes in fibroblast-synthesis as precursors of higher molecular weight. J Biol Chem 255:4937–4945.

    PubMed  CAS  Google Scholar 

  • Hauri HP (1983) Biosynthesis and transport of plasma membrane glycoproteins in the rat intestinal epithelial cell: studies with sucrase-isomaltase. In: Brush border membranes. Ciba Found Symp, vol 95. Pitman, London, pp 132–149.

    Google Scholar 

  • Hauri HP, Quaroni A, Isselbacher KJ (1979) Biogenesis of intestinal plasma membrane: posttranslational route and cleavage of sucrase-isomaltase. Proc Natl Acad Sei USA 76:5183–5186.

    Article  CAS  Google Scholar 

  • Hauri HP, Quaroni A, Isselbacher KJ (1980) Monoclonal antibodies to sucrase-isomaltase: probes for the study of postnatal development and biogenesis of the intestinal microvillus membrane. Proc Natl Acad Sei USA 77:6629–6633.

    Article  CAS  Google Scholar 

  • Hauri HP, Wacker H, Rickli EE, Bigler-Meier B, Quaroni A, Semenza G (1982) Biosynthesis of sucrase-isomaltase. Purification and NH2-terminal amino acid sequence of the rat sucrase-isomaltase precursor (pro-sucrase-isomaltase) from fetal intestinal transplants. J Biol Chem 257:4522–4528.

    PubMed  CAS  Google Scholar 

  • Hauri HP, Sterchi EE, Bienz D, Fransen JAM, Marxer A (1985) Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol 101:838–851.

    Article  PubMed  CAS  Google Scholar 

  • Hilkens J, Tager JM, Buys F, Brouwer-Kelder E, Thienen GM van, Tegelaers FPW, Hilgers J (1981) Monoclonal antibodies against human acid α-glucosidase, Biochim Biophys Acta 678:7–11.

    PubMed  CAS  Google Scholar 

  • Kaplan A, Achord DT, Sly WS (1977) Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc Natl Acad Sci USA 74:2026–2030.

    Article  PubMed  CAS  Google Scholar 

  • Lennarz W (1983) Overview: role of intracellular membrane systems in glycosylation of proteins. In: Fleischer S, Fleischer B (eds) Methods in enzymology, vol 98. Academic Press, London New York, pp 91–97.

    Google Scholar 

  • Lie SO, Schofield B (1973) Inactivation of lysosomal function by chloroquine. Biochem Pharmacol 22:3109–3114.

    Article  PubMed  CAS  Google Scholar 

  • Michaels JE, LeBlond CP (1976) Transport of glycoprotein from Golgi apparatus to cell surface by means of carrier vesicles, as shown by radioautography of mouse colonic epithelium after injection of 3H-fucose. J Microsc Biol Cell 25:243–248.

    Google Scholar 

  • Montgomery RK, Sybichi MA, Forcier AG, Grand RJ (1981) Rat intestinal microvillus membrane sucrase-isomaltase is a single high molecular weight protein and fully active enzyme in the absence of luminal factors. Biochem Biophys Acta 661:346–349.

    PubMed  CAS  Google Scholar 

  • Ohkuma S, Poole B (1978) Fluorescent probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 75:3327–3331.

    Article  PubMed  CAS  Google Scholar 

  • Oude Elferink RPJ, Brouwer-Kelder EM, Surya I, Strijland MK, Reuser AJJ, Tager JM (1984a) Isolation and characterization of a precursor form of lysosomal α-glucosidase from human urine, Eur J Biochem 139:489–495.

    Article  PubMed  CAS  Google Scholar 

  • Oude Elferink RPJ, Strijland A, Surya I, Brouwer-Kelder EM, Kroos M, Hilkens J, Hilgers J, Reuser AJJ, Tager JM (1984b) Use of a monoclonal antibody to distinguish between precursor and mature forms of lysosomal α-glucosidase. Eur J Biochem 139:497–502.

    Article  PubMed  CAS  Google Scholar 

  • Oude Elferink RPJ, van Doorn-van Wakeren J, Strijland A, Reuser AJJ, Tager JM (1985) Biosynthesis and intracellular transport of α-glucosidase and cathepsin D in normal and mutant human fibroblasts. Eur J Biochem 153:55–63.

    Article  PubMed  CAS  Google Scholar 

  • Paigen K, Peterson J (1978) Coordinacy of lysosomal enzyme excretion in human urine, J Clin Invest 61:751–762.

    Article  PubMed  CAS  Google Scholar 

  • Pinto M, Robine-Leon S, Appay M-D, Kedinger M, Triador N, Dussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fogh J, Zweibaum A (1983) Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 47:323–330.

    Google Scholar 

  • Quaroni A, Kirsch K, Weiser MM (1979a) Synthesis of membrane glycoproteins in rat small-intestinal villus cells. Redistribution of L-(l,5,6–3H)-fucose-labelled membrane glycoproteins among Golgi, lateral basal and microvillus membranes in vivo. Biochem J 182:203–212.

    PubMed  CAS  Google Scholar 

  • Quaroni A, Kirsch K, Weiser MM (1979b) Synthesis of membrane glycoproteins in rat small-intestinal villus cells. Effect of colchicine on the redistribution of L-(1,5,6–3H)-fucose labelled membrane glycoproteins among Golgi, lateral basal and microvillus membranes. Biochem J 182:213–221.

    PubMed  CAS  Google Scholar 

  • Reuser AJJ, Kroos M, Oude Elferink RPJ, Tager JM (1985) Defects in synthesis, phos-phorylation, and maturation of acid α-glucosidase in glycogenosis type II. J Biol Chem 260:8336–8341.

    PubMed  CAS  Google Scholar 

  • Roth J, Bendayan M, Orci L (1978) Ultrastructural localization of intracellular antigens by the use of the protein A-gold complex. J Histochem Cytochem 26:1074–1081.

    Article  PubMed  CAS  Google Scholar 

  • Sahagian GG (1984) The mannose 6-phosphate receptor: function, biosynthesis and translocation, Biol Cell 51:207–214.

    PubMed  CAS  Google Scholar 

  • Semenza G (1981) Intestinal oligo- and disaccharidases. In: Randle PJ, Steiner DF, Whelan WG (eds) Carbohydrate metabolism and its disorders, vol 3. Academic Press, London New York, pp 425–479.

    Google Scholar 

  • Simons K, Fuller SD (1985) Cell surface polarity in epithelial cells. Annu Rev Cell Biol 1:243–288.

    Article  PubMed  CAS  Google Scholar 

  • Simons NL, Rugg EL, Tivey DR (1985) Madin-Darby canine kidney cells: an in vitro model for intestinal and renal epithelial transport function. Mol Physiol 8:23–34.

    Google Scholar 

  • Sjöström H, Noren O, Christiansen L, Wacker H, Semenza G (1980) A fully active, two-active site, single-chain sucrase-isomaltase from pig small intestine. Implications for the biosynthesis of a mammalian integral stalked membrane protein. J Biol Chem 225:11332–11338.

    Google Scholar 

  • Sly WS, Fischer HD (1982) The phosphomannosyl recognition system for intracellular transport of lysosomal enzymes. J Cell Biochem 18:67–85.

    Article  PubMed  CAS  Google Scholar 

  • Smith RE, Farquhar MG (1966) Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland. J Cell Biol 31:319–346.

    Article  PubMed  CAS  Google Scholar 

  • Steckel F, Waheed A, Hasilik A, Figure K von, Oude Elferink RPJ, Kaisbeek R, Tager JM (1982) Decreased stability of α-D-glucosidase in the adult form of Pompe disease (glycogenosis II). Hoppe Seyler’s Z Physiol Chem 363:1040.

    Google Scholar 

  • Tager JM, Reuser AJJ, Hilgers J, Hilkens J (1984) Processing of human lysosomal α-glucosidase. In: Barranger IA, Brady RJ (eds) Molecular basis of lysosomal storage disorders. Academic Press, London New York, pp 273–283.

    Google Scholar 

  • Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57:551–565.

    Article  PubMed  CAS  Google Scholar 

  • Weiser MM, Neumeier MM, Quaroni A, Kirsch K (1978) Synthesis of plasmalemmal glycoproteins in intestinal epithelial cells. Separation of Golgi membranes from villus and crypt cell surface membranes: galactosyltransferase activity of surface membrane. J Cell Biol 77:722–734.

    CAS  Google Scholar 

  • Wileman T, Harding C, Stahl P (1985) Receptor-mediated endocytosis. Biochem J 232: 1–14.

    PubMed  CAS  Google Scholar 

  • Zweibaum A, Pinto M, Chevalier G, Dussaulx E, Triadou N, Lacroix B, Haffen K, Brun J-L Rousset M (1985) Enterocytic differentiation of a subpopulation of the human colon tumor cell line HT-29 selected for growth in sugar-free medium and its inhibition by glucose. J Cell Physiol 122:21–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ginsel, L.A. et al. (1988). Intracellular Transport of Brush-Border and Lysosomal Enzymes in the Human Enterocyte. In: Benga, G., Tager, J.M. (eds) Biomembranes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61374-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61374-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64815-1

  • Online ISBN: 978-3-642-61374-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics