Skip to main content

Human Clinical Exposure Studies: Body Box or Pandora’s Box?

  • Conference paper
Inhalation Toxicology

Part of the book series: ILSI Monographs ((ILSI MONOGRAPHS))

Abstract

The development of air quality standards or assignment of risk for acute and/or chronic inhalation of low-level environmental air pollutants is complex. Typically, the database for these exercises arises from three separate arenas: the epidemiologic study, animal exposures, and human inhalation studies. Each possesses unique advantages but also carries significant limitations. For example, the epidemiologic study examines the “real world” but then struggles with real-world problems: such important confounders as cigarette smoking, socioeconomic status, and occupational factors, as well as the difficulties in characterizing exposure. This is contrasted with inhalation studies in animals which allow remarkable precision in quantifying exposure duration and concentration, a wide variety of physiological, biochemical, and histological endpoints, and the opportunity to examine extremes of the exposure-response relationship. Often, however, consideration of these studies in the standard-setting process is constrained by difficulty in extrapolating from animals to humans, and occasionally exclusion results from unrealistic exposure design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amdur MO, Silverman L, Drinker P (1952) Inhalation of sulfuric acid mist by human subjects. Arch Ind Hyg Occup Med 6:305–313

    CAS  Google Scholar 

  2. Avol EL, Linn WS, Venet TG, Shamoo DA, Hackney JD (1984) Comparative respiratory effects of ozone and ambient oxidant pollution exposure during heavy exercise. J Air Pollut Control Assoc 34:804–809

    PubMed  CAS  Google Scholar 

  3. Bates DV, Bell G, Burnham C, Hazucha M, Mantha J, Pengelly LD, Silverman F (1972) Short-term effects of ozone on the lung. J Appl Physiol 32:176–181

    PubMed  CAS  Google Scholar 

  4. Bauer MA, Utell MJ, Morrow PE, Speers DM, Gibb FR (1985) Route of inhalation influences airway responses to 0.30 ppm nitrogen dioxide in asthmatic subjects (abstract). Am Rev Respir Dis 131:A171

    Google Scholar 

  5. Bauer MA, Utell MJ, Morrow PE, Speers DM, Gibb FR (1986) Inhalation of 0.30 ppm nitrogen dioxide potentiates exercise-induced bronchospasm in asthmatics. Am Rev Respir Dis 134:1203–1208

    PubMed  CAS  Google Scholar 

  6. Bethel RA, Erle DJ, Epstein J, Sheppard D, Nadel JA, Boushey HA (1983) Effect of exercise rate and route of inhalation on sulfur-dioxide induced bronchoconstriction in asthmatic subjects. Am Rev Respir Dis 128:592–596

    PubMed  CAS  Google Scholar 

  7. Curry JJ (1945) The action of histamine on the respiratory tract in normal and asthmatic subjects. J Clin Invest 25:785–791

    Article  Google Scholar 

  8. Dungworth DL, Castleman WL, Chow CK, Mellick PW, Mustafa MG, Tarkington B, Tyler WS (1975) Effect of ambient levels of ozone on monkeys. Fed Proc Fed Am Soc Exp Biol 34:1670–1674

    CAS  Google Scholar 

  9. Holtzman MJ, Fabbri LM, O’Byrne PM, Gold BD, Aizawa H, Walter EH, Alpert SE (1983) Importance of airway inflammation for hyperresponsiveness induced by ozone. Am Rev Respir Dis 127:686–690

    PubMed  CAS  Google Scholar 

  10. Kehrl H, Vincent L, Kowalsky R, Horstman D, McCartney W, O’Neil J, Bromberg P (1986) Ozone-induced increased respiratory epithelial permeability correlates with FEV1 decrements (abstract). Am Rev Respir Dis 133:A215

    Google Scholar 

  11. Kirkpatrick MB, Sheppard D, Nadel JA, Boushey HA (1982) Effect of the oronasal breathing route on sulfur dioxide-induced bronchoconstriction in exercising asthmatic subjects. Am Rev Respir Dis 125:627–631

    PubMed  CAS  Google Scholar 

  12. Linn WS, Solomon JC, Trim SC, Spier CE, Shamoo DA, Venet TG, Avol EL, Hackney JD (1985) Effects of exposure to 4 ppm nitrogen dioxide in healthy and asthmatic volunteers. Arch Environ Health 40:234–239

    PubMed  CAS  Google Scholar 

  13. Linn WS, Venet TG, Shamoo DA, Valencia LM, Anzar UT, Spier CE, Hackney JD (1983) Respiratory effects of sulfur dioxide in heavily exercising asthmatics. Am Rev Respir Dis 127:278–283

    PubMed  CAS  Google Scholar 

  14. McDonnell WF, Horstman DH, Hazucha MJ, Seal E, Haak ED, Salaam S, House DE (1983) Pulmonary effects of ozone exposure during exercise: dose-response characteristics. J Appl Physiol 45:1345–1352

    Google Scholar 

  15. Miller FJ, Menzel DB, Coffin DL (1978) Similarity between man and laboratory animals in regional deposition of ozone. Environ Res 17:84–101

    Article  PubMed  CAS  Google Scholar 

  16. Miller FJ, Overton JH, Jaskot RH, Menzel DB (1985) A model of the regional uptake of gaseous pollutants in the lung, I: the sensitivity of the uptake of ozone in the human lung to lower respiratory tract secretions and to exercise. Toxicol Appl Pharmacol 79:11–27

    Article  PubMed  CAS  Google Scholar 

  17. Miller FJ, Overton JH, Meyers ET, Graha MJA (1982) Pulmonary dosimetry of nitrogen dioxide in animals and man. In: Schneider T, Grant L (eds) Air pollution by nitrogen oxides. Proceedings of US-Dutch international symposium on NOx. Elsevier, Amsterdam, pp 377–386

    Google Scholar 

  18. Morrow PE, Utell MJ (1986) Technology and methodology of clinical exposures to aerosols. In: Lee SD, Schneider T, Grant LD, Verkerk PJ (eds) Aerosols: research, risk assessment and control strategies. Proceedings of the second US-Dutch international symposium. Lewis, Chelsea, MI, pp 661–669

    Google Scholar 

  19. Niinimaa V, Cole P, Mintz S, Shephard RJ (1980) The switching point from nasal to oronasal breathing. Respir Physiol 42:61–71

    Article  PubMed  CAS  Google Scholar 

  20. Overton JH (1984) Physiochemical processes and the formulation of dosimetry model. J Toxicol Environ Health 13:273–294

    Article  PubMed  CAS  Google Scholar 

  21. Reynolds HY, Newball HH (1974) Analysis of proteins and respiratory cells obtained from human lungs by bronchial lavage. J Lab Clin Med 84:559–573

    PubMed  CAS  Google Scholar 

  22. Roger LJ, Horstman DH, McDonnell WF, Kehrl H, Seal E, Chapman RS, Massaro EJ (1985) Pulmonary effects in asthmatics exposed to 0.3 ppm NO2 during repeated exercise (abstract). Toxicologist 5:70

    Google Scholar 

  23. Seltzer J, Bigby BG, Stulbarg M, Holtzman MJ, Nadel JA, Ueki IF, Leikauf GD, Goetzl EJ, Boushey HA (1986) O3-induced change in bronchial reactivity to methacholine and airway inflammation in humans. J Appl Physiol 60:1321–1326

    PubMed  CAS  Google Scholar 

  24. Sheppard D (1985) Measurement of airway responsiveness in studies of health effects of air pollution. In: Frank R, O’Neil JJ, Utell MJ, Hackney JD, Van Ryzin J, Brubaker PE (eds) Inhalation toxicology of air pollution: clinical research considerations. American Society for Testing and Materials, Philadelphia, pp 53–59

    Chapter  Google Scholar 

  25. Smeglin AM, Roberts NJ Jr, Morrow PE, Utell MJ (1986) Effect of 0.6 ppm nitrogen dioxide on human alveolar macrophage inactivation of virus (abstract). Am Rev Respir Dis 133:A216

    Google Scholar 

  26. Utell MJ (1986) Measurements of central and peripheral pulmonary function to assess responses to air pollutants: an overview. In: Frank R, O’Neil JJ, Utell MJ, Hackney JD, Van Ryzin J, Brubaker PE (eds) Inhalation toxicology of air pollution: clinical research considerations. American Society for Testing and Materials, Philadelphia, pp 43–52

    Google Scholar 

  27. Utell MJ, Morrow PE, Speers DM, Darling J, Hyde RW (1983) Airway responses to sulfate and sulfuric acid aerosols in asthmatics. Am Rev Respir Dis 128:444–450

    PubMed  CAS  Google Scholar 

  28. Yokoyama E, Frank R (1972) Respiratory uptake of ozone in dogs. Arch Environ Health 25:132–138

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Utell, M.J. (1988). Human Clinical Exposure Studies: Body Box or Pandora’s Box?. In: Dungworth, D.L., Kimmerle, G., Lewkowski, J., McClellan, R.O., Stöber, W. (eds) Inhalation Toxicology. ILSI Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61355-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61355-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64806-9

  • Online ISBN: 978-3-642-61355-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics