Skip to main content

Relativistic Equations of Motion Method

  • Conference paper
  • 252 Accesses

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 50))

Abstract

A systematic approach to a relativistic theory of electronic excitations in atoms and molecules is discussed. The methodology is based on the relativistic equations of motion for excitation processes. For low-Z systems, relativistic and radiative corrections can be calculated in Breit-Pauli approximation. For medium and high-Z systems the “no-pair” Hamiltonian is chosen as the unperturbed Hamiltonian, the residual interaction is regarded as a perturbation and quantum electrodynamical effects are calculated within the framework of perturbation theory. The second-order correction to the excitation energy, due to creation and destruction of virtual electron-positron pairs, is discussed. Radiative corrections to the excitation energy are calculated as first-order corrections arising from the use of the Breit operator. Detailed expressions for the Breit interaction contributions are derived when the excitation operator is approximated by the first-order perturbation theory solution of the RPA equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown GE, Ravenhall DG (1951) Proc Roy Soc London A208:552

    Google Scholar 

  2. Datta SN (1980) Chem Phys Lett 74:568

    Article  CAS  Google Scholar 

  3. Dat-ta SN, Ewig CS (1982) Chem Phys Lett 85:443

    Article  CAS  Google Scholar 

  4. Datta SN, Jagannathan S (1984) Pramana 23:467

    Article  CAS  Google Scholar 

  5. Rosicky F, Mark F (1975) J Phys B8:2581

    Google Scholar 

  6. Mark F, Schwarz WHE (1982) Phys Rev Lett 48:673

    Article  CAS  Google Scholar 

  7. Schwarz WHE, Wallmeier H (1982) Mol Phys 46:1045

    Article  CAS  Google Scholar 

  8. Schwarz WHE, Wechsel-Trakowski E (1982) Chem Phys Lett 85:94

    Article  CAS  Google Scholar 

  9. Wallmeier H, Kutzelnigg W (1983) Phys Rev A28:3092

    Google Scholar 

  10. Kutzelnigg W (1984) Int J Quantum Chem 25:107

    Article  CAS  Google Scholar 

  11. Stanton RE, Havriliak S (1984) J Chem Phys 81:1910

    Article  CAS  Google Scholar 

  12. Sepp WD, Fricke B (1985) In: Kelly HP, Kim Y-K (eds) Atomic theory workshop on relativistic and QED effects in heavy atoms. AIP, New York

    Google Scholar 

  13. Grant IP (1986) J Phys B19:3187

    Google Scholar 

  14. Schwarz WHE (1987) Physica Scirpta 36:403

    Article  CAS  Google Scholar 

  15. Datta SN (1988) Pramana J Phys (in press)

    Google Scholar 

  16. Sucher J (1980) Phys Rev A22:348

    Google Scholar 

  17. Sucher J (1987) Physica Scripta 36:271

    Article  CAS  Google Scholar 

  18. Furry WH (1951) Phys Rev 81:115

    Article  Google Scholar 

  19. Mittleman MH (1981) Phys Rev A24:1167

    Google Scholar 

  20. Sapirstein J (1987) Physica Scripta 36:801

    Article  CAS  Google Scholar 

  21. Kutzelnigg W (1987) Physica Scripta 36:416

    Article  CAS  Google Scholar 

  22. Mohr PJ (1985) Phys Rev A32:1949

    Google Scholar 

  23. Mohr PJ (1983) In: Malli G (ed) Relativistic effects in atoms, molecules and solids. Plenum, New York

    Google Scholar 

  24. Johnson WR, Lin CD (1976) Phys Rev A14:565

    Google Scholar 

  25. Huang K-N, Johnson WR (1982) Phys Rev A25:634

    Google Scholar 

  26. Lindroth E (1987) Physica Sripta 36:485

    Article  CAS  Google Scholar 

  27. Lindroth E, Heully J-L, Lindgren I, Mårtensson Pendrill A-M (1987) J Phys B20:1679

    Google Scholar 

  28. Dietz K, Lechtenfeld O, Weynmans G (1982) J Phys B15:4301, 4315

    Google Scholar 

  29. Dietz K (1986) In: Giant resonances in atoms and solids, NATO Advanced Study Institute. Les Houches

    Google Scholar 

  30. Dietz K (1986) In: Proceedings of the international conference on vacuum ultraviolet physics. Lund

    Google Scholar 

  31. Rowe DJ (1968) Rev Mod Phys 40:153

    Article  Google Scholar 

  32. Dunning TH, McKoy V (1967) J Chem Phys 47:1735

    Article  CAS  Google Scholar 

  33. Shibuya T-I and McKoy V (1970) J Chem Phys 53:3308

    Article  CAS  Google Scholar 

  34. Simons J and Smith WD (1973) J Chem Phys 58:4899

    Article  CAS  Google Scholar 

  35. Simons J and Jorgensen P (1976) J Chem Phys 64:1413

    Article  CAS  Google Scholar 

  36. Goscinski O, Lukman B (1970) Chem Phys Lett 7:573

    Article  CAS  Google Scholar 

  37. Jorgensen P, Simons J (1981) Second quanization-based methods in quantum chemistry, Academic Press, New York

    Google Scholar 

  38. Jankowski K, Rutkowski A (1987) Physica Scripta 36:464

    Article  CAS  Google Scholar 

  39. Bethe HA, Salpeter EE (1957) Quantum mechanics of one-and two-electron atoms, Springer, Berlin

    Google Scholar 

  40. Laaksonen L, Grant IP (1984) Chem Phys Lett 109:485

    Article  CAS  Google Scholar 

  41. Laaksonen L, Grant IP (1984) Chem Phys Lett 112:157

    Article  CAS  Google Scholar 

  42. Hata J, Grant IP (1982) J Phys B15:L549

    Google Scholar 

  43. Huang K-N (1980) In: Proceedings of the workshop on foundations of the relativistic theory of atomic structure. Argonne National Laboratory, Argonne, Illinois

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Datta, S.N. (1989). Relativistic Equations of Motion Method. In: Mukherjee, D. (eds) Aspects of Many-Body Effects in Molecules and Extended Systems. Lecture Notes in Chemistry, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61330-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61330-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50765-9

  • Online ISBN: 978-3-642-61330-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics