Advertisement

On the Distribution of Monochromatic Configurations

  • P. Frankl
  • R. L. Graham
  • V. Rödl
Part of the Algorithms and Combinatorics 8 book series (AC, volume 8)

Abstract

Much of Ramsey theory is concerned with the study of structure which is preserved under finite partitions, (eg., see [8], [9], [12]). Some of the earliest results in the field were the following.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. Bergelson, A density statement generalizing Schur’s theorem, J.Combin. Th. (A) 43 (1986), 338–343.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    W. Deuber, R.L. Graham, H.J. Prőmel, B. Voigt, A Canonical Partition Theorem for Equivalence Relations on 2t, J. Combinatorial Th. (A), 34, (1983), 331–339.zbMATHCrossRefGoogle Scholar
  3. [3]
    W. Deuber, Partitionen und lineare Gleichungsysteme, Math. Z. 133 (1973), 109–123.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    P. Frankl, R.L. Graham and V. Rödl, Quantitative theorems for regular systems of equations, (to appear).Google Scholar
  5. [5]
    P. Frankl, R.L. Graham and V. Rödl, Iterated combinatorial density theorems, (to appear).Google Scholar
  6. [6]
    H. Furstenberg, Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J.Analyse Math. 34 (1978), 275–291.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    H. Furstenberg, Y. Katznelson and D. Ornstein, The ergodic theoretic proof of Szemerédi’s Theorem, Bull Amer. Math. Soc. 7 (1982), 527–552.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    R.L. Graham, Rudiments of Ramsey Theory, Regional Conference Series in Mathematics, no. 45, AMS, 1981.Google Scholar
  9. [9]
    R.L. Graham, B.L. Rothschild, J.H. Spencer, Ramsey Theory, John Wiley & Sons, Inc., 1980.Google Scholar
  10. [10]
    R.L. Graham and V. Rödl, Numbers in Ramsey theory, in Surveys in Com-binatorica 1987 (C. Whitehead, ed) LMS Lecture Note Series 123, Cambridge, 1987, 111–113.Google Scholar
  11. [11]
    H. Lefmann, Kanonische Partitionssatze, Ph.D. Dissertation, Univ. of Bielefeld (1985).Google Scholar
  12. [12]
    J. Nešetřil, V. Rödl, Partition Theory and its Applications, Surveys in Combinatorics 1979 (B. Bollobás, ed) LMS Lecture Note Series 38, Cambridge, 1979, 96–157.Google Scholar
  13. [13]
    H.J. Prömel, V. Rödl, An elementary proof of the canonizing version of Gallai-Witt’s Theorem, J.Combinatorial Theory (A), 42, 2 (1986), 144–149.zbMATHCrossRefGoogle Scholar
  14. [14]
    H.J. Prömel, B. Voigt, Canonical Partition Theorems for Parameter Sets, J. Combinatorial Theory (A), 35 (1985), 309–327.CrossRefGoogle Scholar
  15. [15]
    R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), 242–280.MathSciNetCrossRefGoogle Scholar
  16. [16]
    F.P. Ramsey, On a problem in formal logic, Proc. London Math. Soc. (2) 30 (1930), 264–285.CrossRefGoogle Scholar
  17. [17]
    I. Schur, Über die Kongruenz x m + y m = z m (mod p), Jber.Deutsch. Math. Verein. 25 (1916), 114–116.Google Scholar
  18. [18]
    E. Szemerédi, On Sets of Integers containing no k Elements in Arithmetic Progression, Acta Arith. 27 (1975), 199–245.MathSciNetzbMATHGoogle Scholar
  19. [19]
    B.L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw. Arch. Wish. 15 (1927), 212–216.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. Frankl
    • 1
  • R. L. Graham
    • 2
  • V. Rödl
    • 3
  1. 1.C.N.R.S.ParisFrance
  2. 2.AT & T Bell LaboratoriesMurray HillUSA
  3. 3.Czech. Technical UniversityHusovaCzechoslovakia

Personalised recommendations