Spectral Studies of Automata

  • J. H. Loxton
Part of the Algorithms and Combinatorics 8 book series (AC, volume 8)


It is reasonable to argue that the simplest sequences are the periodic sequences. There are at least two ways to make this truism meaningful. The n-th term of a periodic sequence can be determined once we know the period and the integer n and this amounts to approximately log2 n bits of information for large n. Also, the number of different words of length n in a periodic sequence is bounded. Periodic sequences minimise both of these characteristics. At the other end of the scale are the random sequences. We can take a random sequence to be one for which the most efficient way to find the n-th term is to make a list of the first n terms, requiring at least n bits of information. This implies another essential aspect of randomness that, for every n, the words of length n in the sequence are equidistributed.


Functional Equation Spectral Study Arithmetic Progression Finite Automaton Periodic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Christol, T. Kamae, M. Mendes-France and G. Rauzy, “Suites algébriques, automates et substitutions.” Bull. Soc. Math. France 108 (1980), 401–419.MathSciNetzbMATHGoogle Scholar
  2. [2]
    A. Cobham, “On the base dependence of sets of numbers recognizable by finite automata.” Mathematical Systems Theory 3 (1969), 186–192.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    A. Cobham, “Uniform tag sequences.” Mathematical Systems Theory 6 (1972), 164–192.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    N. G. de Bruijn, “On Mahler’s partition problem.’ Proc. Nederl. Akad. Wetensch. 51 (1948), 659–669. (=Indag. Math. 10 (1948), 210-220.)zbMATHGoogle Scholar
  5. [5]
    S. Eilenberg, Automata, languages and machines. Vol. A. (Academic Press, 1974.)Google Scholar
  6. [6]
    F. R. Gantmacher, Applications of the theory of matrices. (Wiley, 1959.)Google Scholar
  7. [7]
    R. K. Guy, Unsolved problems in number theory. (Springer, 1981.)Google Scholar
  8. [8]
    G. H. Hardy, Divergent series (Oxford, 1949.)Google Scholar
  9. [9]
    T. Kamae, “Mutual singularity of spectra of dynamical systems given by sums of digits to different bases.” Astérisque 49 (1977), 109–114.MathSciNetGoogle Scholar
  10. [10]
    M. Keane, “Strongly mixing g-measures.” Inv. Math. 16 (1972), 309–324.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    J. H. Loxton and A. J. van der Poorten, “Arithmetic properties of the solutions of a class of functional equations.” J. reine angew. Math. 330 (1982), 159–172.MathSciNetzbMATHGoogle Scholar
  12. [12]
    K. Mahler, “On a special function.” J. Number Theory 12 (1980), 20–26.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    C. Mauduit, “Automates finis et équirépartition modulo 1.” C. R. Acad. Sc. Paris 299 (1984), 121–123.MathSciNetzbMATHGoogle Scholar
  14. [14]
    M. Queffelec, “Etude spectrale de substitutions.” C. R. Acad. Sc. Paris 297 (1983), 317–320.MathSciNetzbMATHGoogle Scholar
  15. [15]
    C. L. Stewart, “On the representation of an integer in two different bases.” J. reine angew. Math. 319 (1980), 63–72.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    A. Thue, “Über die gegenseitige Lage gleicher Teile gewisser Zeichenreichen.” Christiania Vidensk. Selsk. Skr. (1912), no. 1. (= Selected mathematical papers, Universitetsfolaget, Oslo, 1977, 413 — 477.)Google Scholar
  17. [17]
    A. Zygmund, Trigonometric series. 1. (Cambridge, 2nd edition, 1979.)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. H. Loxton
    • 1
  1. 1.School of Mathematics and PhysicsMacquarie UniversityNew South WalesAustralia

Personalised recommendations