Skip to main content

Some Applications of Structured Models in Population Dynamics

  • Chapter
Applied Mathematical Ecology

Part of the book series: Biomathematics ((BIOMATHEMATICS,volume 18))

Abstract

It is now a well-known fact that age or size structure often affects qualitative changes in the dynamics of population models (see Nisbet and Gurney in Mathematical Ecology. An Introduction, eds. T.G. Hallam and S.A. Levin 1986). However the incorporation of age or size structure leads to infinite dimensional dynamical systems that are difficult to analyze. Furthermore, in some cases increased detail may reduce predictive capability because of problem of parameter estimation and error propagation. Because of this difficulty, what I call the “science of biological aggregation” has responded with systematic attempts to develop models of reduced mathematical complexity that do not sacrifice biological realism. In many instances, a minimal level of detail is required; further aggregation results in the loss of vital information and may lead to erroneous conclusions. Successful simplified realistic models have to be less aggregated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R.M., May, R.M. (1983) Vaccination against rubella and measles: quantitative investigations of different policies. J. Hyg. 90, 259–325

    Article  Google Scholar 

  • Beddington, J.R., Taylor, D.B. (1973) Optimal age specific harvesting of a population. Biometrics 29,801–809

    Article  Google Scholar 

  • Barbour, A.D. (1978) Macdonald’s model and the transmission of bilharzia. Trans. Royal Soc. Trop. Med. Hyg. 72, 6–15

    Article  Google Scholar 

  • Bostford, L.W. (1981) Optimal fishery policy for size-specific, density-dependent population models. J. Math. Biol. 12, 265–293

    Article  MathSciNet  Google Scholar 

  • Botsford, L.W., Wainwright, T.C. (1985) Optimal fishery policy: An equilibrium solution with irreversible investment. J. Math. Biol. 21, 317–327

    Article  MATH  MathSciNet  Google Scholar 

  • Brauer, F. (1984) Constant yield harvesting of population systems. In: Hallam, T.G., Levin, S.A. (eds.) Mathematical Ecology Proceedings of the Conference, Trieste, Italy, Lecture Notes in Biomathema-tics, vol. 54. Springer, Berlin Heidelberg New York London Paris Tokyo, pp. 234–242

    Google Scholar 

  • Brauer, F., Sánchez, D.A. (1975) Constant rate population harvesting: equilibrium and stability. Theor. Pop. Biol. 8, 12–30

    Article  Google Scholar 

  • Brauer, F., Soudack, A.C., Jarosh, H.S. (1976) Stabilization and destabilization of predator-prey systems under harvesting and nutrient enrichment. Int. J. Control 23, 553–573

    Article  MATH  Google Scholar 

  • Brauer, F., Soudack, A.C. (1979a) Stability regions and transition phenomena for harvested predator-prey systems. J. Math. Biol. 7, 319–337

    Article  MATH  MathSciNet  Google Scholar 

  • Brauer, F., Soudack, A.C. (1979b) Stability regions in predator-prey systems with constant rate harvesting. J. Math. Biol. 8, 55–71

    Article  MATH  MathSciNet  Google Scholar 

  • Castillo-Chavez, C. (1987a) Linear character dependent models with constant time delay in population dynamics. Int. J. of Math. Mod. 9, 821–836

    Article  MATH  MathSciNet  Google Scholar 

  • Castillo-Chavez, C. (1987b) Nonlinear character dependent models with constant time delay in population dynamics. J. Math. Anal, and Appl. 128, 1–29

    Article  MATH  MathSciNet  Google Scholar 

  • Castillo-Chavez, C., Hethcote, H.W., Andreasen, V., Levin, S.A., Liu, W-m (1988) Cross-immunity in the dynamics of homogeneous and heterogeneous populations. In: Hallam, T.G., Gross, L.G., Levin, S.A. (eds.) Proc. of the Research Conference, Second Autumn Course on Mathematical Ecology, Trieste, Italy, 1986. Singapore: World Scientific Publishing Co, pp. 303–316

    Google Scholar 

  • Castillo-Chavez, C, Hethcote, H.W, Andreasen, V, Levin, S.A. Liu, W-m (1989) Epidemiological models with age structure and proportionate mixing J. Math Biol, (in press)

    Google Scholar 

  • Caswell, H. (1986) Life cycle models for plants. In: Some Mathematical Questions in Biology, vol. XVIII. Lectures on Mathematics in the Life Sciences

    Google Scholar 

  • Clark, C.W. (1976) Mathematical Bioeconomics, Wiley & Sons, New York

    MATH  Google Scholar 

  • Dietz, K. (1975) Transmission and control of arbovirus diseases. In: Cooke, K.L. (ed.) Epidemiology. Society for Industrial and Applied Mathematics, Philadelphia, pp. 104–121

    Google Scholar 

  • Dietz, K, Schenzle, D. (1985) Proportionate mixing models for age-dependent infection transmission. J. Math. Biol. 22, 117–120

    Article  MATH  MathSciNet  Google Scholar 

  • Doubleday, W.G. (1975) Harvesting in matrix population models. Biometrics 31, 189–200.

    Article  MATH  Google Scholar 

  • Frauenthal, J. C. (1986) Analysis of age structured models. In: Hallam, T., Levin, S.A. (eds.) Mathematical Ecology. An Introduction. Biomathematics, vol. 17. Springer, Berlin Heidelberg New York London Paris Tokyo, pp. 117–147

    Google Scholar 

  • Goh, B.S, Leitmann, G, Vincent, T.L. (1974) Optimal control of a prey-predator system. Math. Biosci. 19, 263–286

    Article  MATH  MathSciNet  Google Scholar 

  • Gurney, W.S.C., Nisbet, R.M. (1982) Modelling Fluctuating Populations. Wiley & Sons, New York

    MATH  Google Scholar 

  • Gurtin, M.E, MacCamy, R.C. (1974) Non-linear age dependent population dynamics. Arch. for Rat. Mech. and Anal. 54(3), 281–300

    MATH  MathSciNet  Google Scholar 

  • Hallam, T.G, Levin, S.A. (eds.) (1986) Mathematical Ecology. An Introduction. Biomathematics, vol. 17. Springer, Berlin Heidelberg New York London Paris Tokyo

    Google Scholar 

  • Hethcote, H.W, Yorke, J.A. (1984) Gonorrhea Transmission Dynamics, and Control. Lecture Notes in Biomathematics, vol. 56. Springer, Berlin Heidelberg New York London Paris Tokyo

    Google Scholar 

  • Hoppensteadt, F. (1974) An age dependent epidemic model. J. of Franklin Institute 297, 325–333

    Article  MATH  Google Scholar 

  • Hoppensteadt, F. (1975) Mathematical Theories of Populations: Demographics, Genetics and Epidemics. SIAM Regional Conference Series in Applied Math, No. 20, Philadelphia

    MATH  Google Scholar 

  • Hoppensteadt, F. (1984) Some influences of population biology in mathematics. In: Essays in the History of Mathematics. Memoirs of the AMS 48(298), 25–29

    MathSciNet  Google Scholar 

  • Keyfitz, N. (1977) Introduction to the Mathematics of Populations. Addison-Wesley, Reading, Mass

    Google Scholar 

  • Leslie, P.H. (1945) On the use of matrices in certain population mathematics. Biometrica 33, 183–212

    Article  Google Scholar 

  • MacKendrick, A.G. (1926) Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc. 44, 98–130

    Article  Google Scholar 

  • May, R.M. (1986) Population biology of microparasitic infections, In: Hallam, T, Levin, S.A. (eds.) Mathematical Ecology. An Introduction. Biomathematics, vol. 17. Springer, Berlin Heidelberg New York London Paris Tokyo, pp. 405–442

    Google Scholar 

  • May, R.M, Anderson, R.M, McLean, A.R. (1988) Possible demographic consequences of HIV/AIDS: I, assuming HIV infection always leads to AIDS. Math. Biosci. (in press)

    Google Scholar 

  • May, R.M, Anderson, R.M, McLean, A.R. (1989) Possible demographic consequences of HIV/AIDS: assuming HIV infection does not necessarily lead to AIDS. In: Castillo-Chavez, C, Levin, S.A, Shoemaker, C. (eds.) Mathematical Approaches to Resource Management and Epidemiology. Lecture Notes in Biomathematics (in press)

    Google Scholar 

  • Nisbet, R.M, Gurney, W.S.C. (1983) The systematic formulation of population models for insects with dynamically varying instar duration. Theor. Pop. Biol. 23, 114–135

    Article  MATH  MathSciNet  Google Scholar 

  • Nisbet, R.M, Gurney, W.S.C. (1986) The formulation of age-structure models. In: Hallam, T, Levin, S.A. (eds.) Mathematical Ecology. An Introduction. Biomathematics, vol. 17. Springer, Berlin Heidelberg New York London Paris Tokyo, pp. 95–115.

    Google Scholar 

  • Nold, A. (1980) Heterogeneity in diseases-transmission modeling. Math Biosci. 52, 227–240

    Article  MATH  MathSciNet  Google Scholar 

  • Oster,. (1978) The dynamics of nonlinear models with age structure. In: Levin, S.A. (ed.) Studies in Mathematical Biology, vol. 16, part II: Populations and Communities. M.A.A, pp. 411–438

    Google Scholar 

  • Rorres, C. (1976) Optimal sustainable yield of a renewable resource. Biometrics 32, 945–948

    Article  MATH  Google Scholar 

  • Rorres, C, Fair, W. (1975) Optimal harvesting policy for an age-specific population. Math. Biosc. 24, 31–47

    Article  MATH  MathSciNet  Google Scholar 

  • Saints, K. (1987) Discrete and continuous models of age-structured population dynamics. Senior Research Report, Harvey Mudd College, Claremont, CA

    Google Scholar 

  • Sánchez, D. (1978) Linear age-dependent population growth with harvesting. Bull. Math. Biol. 40, 377–385

    MATH  Google Scholar 

  • Sánchez, D. (1980) Linear age-dependent population growth will seasonal harvesting. J. Math. Biol. 9, 361–368

    Article  MATH  MathSciNet  Google Scholar 

  • Sattenspiel, L. (1987) Population structure and the spread of disease. Human Biol. 59, 411–438

    Google Scholar 

  • Sattenspiel, L, Simon, C.P. (1988). The spread and persistence of infectious diseases in structured populations. Math. Biosci. (in press)

    Google Scholar 

  • Schenzle, D. (1985) Control of virus transmission in age-structured populations. In: Capasso, V, Grosso, E, Paveri-Fontana, S.L. (eds.) Mathematics in Biology and Medicine. Lecture Notes in Biomathematics, vol. 57. Springer, Berlin Heidelberg New York London Paris Tokyo, pp. 171–178

    Google Scholar 

  • Sharpe, F.R, Lotka, A.J. (1911) A problem in age distribution. Phil. Mag. 21, 435–438

    Google Scholar 

  • Von Foerster, H. (1959) In: Stohlmann, F. (ed.) The Kinetics of Cellular Proliferation Grune and Stratton, New York

    Google Scholar 

  • Webb, G.F. (1985) Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, Inc., New York

    MATH  Google Scholar 

  • Yodzis, P. (1976) Effects of harvesting on competitive systems. Bull. Math. Biol. 38, 97–109

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castillo-Chavez, C. (1989). Some Applications of Structured Models in Population Dynamics. In: Levin, S.A., Hallam, T.G., Gross, L.J. (eds) Applied Mathematical Ecology. Biomathematics, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61317-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61317-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64789-5

  • Online ISBN: 978-3-642-61317-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics