Skip to main content

Influenza and Some Related Mathematical Models

  • Chapter
Book cover Applied Mathematical Ecology

Part of the book series: Biomathematics ((BIOMATHEMATICS,volume 18))

Abstract

Despite advances in biology and medical science that have controlled many severe infectious diseases, influenza remains a recurrent problem, initiating new global pandemics because of its ability to change its form. In 1918–1919, an influenza pandemic (Spanish flu) killed about 20 million people and infected perhaps 2 billion. The special feature of this pandemic was a tendency towards bronchopneumonic complications fatal to previously healthy young adults. In Philadelphia, people were dying so quickly that bodies were stacked by the hundreds in temporary morgues, awaiting burial. Such horrible mortality caused tremendous social and economic disruption, and stimulated intensive research into the cause of the disease (Beveridge, 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, E., Elveback, L.R., Fox, J.P. (1984) Simulation of Infectious Disease Epidemics. Thomas, Springfield, 111.

    Google Scholar 

  • Anderson, R.M., May, R.M. (1986) The invasion, persistence and spread of infectious diseases within animal and plant communities. Phil. Trans. Roy. Soc. Lond. B314, 533–570

    Google Scholar 

  • Bailey, N.T.J. (1975) The Mathematical Theory of Infectious Diseases and Its Applications, 2nd edn. Griffin, London

    MATH  Google Scholar 

  • Baroyan, O.V., Rvachev, L.A., Basilevsky, U.V., Ermakov, V.V., Frank, K.D., Rvachev, M.A. and Shashkov, V.A. (1971) Computer modelling of influenza epidemics for the whole country (USSR). Adv. Appl. Prob. 3, 224–226

    Article  Google Scholar 

  • Baroyan, O.V., Rvachev, L.A. (1977) Mathematics and epidemiology. Moscow: Znanie (in Russian)

    Google Scholar 

  • Beveridge, W.I.B. (1977) Influenza: the last great plague. Heinemann, London

    Google Scholar 

  • Castillo-Chavez, C., Hethcote, H.W., Andreasen, V., Levin, S.A., Liu W. (1988a) Cross immunity in the dynamics of homogeneous and heterogeneous populations. Proceedings of the second autumn course on mathematical ecology

    Google Scholar 

  • Castillo-Chavez, C., Hethcote, H.W., Andreasen, V., Levin, S.A., Liu W. (1988b) Epidemiological models with age structure and proportionate mixing

    Google Scholar 

  • Choi, K., Thacker, S.B. (1981 a) An evaluation of influenza mortality surveillance, 1962–1979 (I) Time series forecasts of expected pneumonia and influenza deaths. Amer. J. Epid. 113, 215–226

    Google Scholar 

  • Choi, K., Thacker, S.B. (1981 b) An evaluation of influenza mortality surveillance, 1962–1979(11) Percentage of pneumonia and influenza deaths as an indicator of influenza activity. Amer. J. Epid. 113, 227–235

    Google Scholar 

  • Couch, R.B., Kasel, J.A. (1983) Immunity to influenza in man. Ann. Rev. Microbiol. 37, 529–49

    Article  Google Scholar 

  • Dietz, K. (1979) Epidemiologic interference of virus populations. J. Math. Biol. 8, 291–300

    Article  MATH  MathSciNet  Google Scholar 

  • Dobson, A.P., May, R.M. (1986) Patterns of invasions by pathogens and parasites. In: Mooney, H.A., Drake, J.A. (ed.) Ecology of biological invasions of North America and Hawaii. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Elveback, L.R., Fox, J.P., Varma, A. (1964) An extension of the Reed-Frost epidemic model for the study of competition between viral agents in the presence of interference. Amer. J. Epid. 80, 356–364

    Google Scholar 

  • Elveback, L.R., Fox, J.P., Ackerman, E., Langworthy, A., Boyd, M., Gatewood, L. (1976) An influenza simulation model for immunization studies. Amer. J. Epid. 103, 152–165

    Google Scholar 

  • Fine, P. (1982) Background paper: applications of mathematical models to the epidemiology of influenza: a critique. In: P. Selby (ed.) Influenza models: prospects for development and use. Sandoz Institute for Health and Socio-economic Studies, pp. 15–85

    Google Scholar 

  • Friedman, R.M. (1981) Interferon: a primer. Academic Press, New York London Toronto Sydney San Franscisco

    Google Scholar 

  • Garnick, E. (1986) A theoretical consideration of resource specialism vs. generalism in parasites and some related questions. Ph.D. Thesis, Cornell University

    Google Scholar 

  • Hale, J.K. (1969) Ordinary differential equations. Wiley Interscience, New York

    MATH  Google Scholar 

  • Hethcote, W.H. (1978) An immunization model for a heterogeneous population. Theor. Pop. Biol. 14, 338–349

    Article  MathSciNet  Google Scholar 

  • Holt, R.D., Pickering, J. (1986) Infectious disease and species coexistence: a model of Lotka Volterra form. Amer. Nat.

    Google Scholar 

  • Kermack, W.O., McKendrick, A.G. (1927) Contributions to the mathematical theory of epidemics, pt. I. Proc. Roy. Soc. All5, 700–721

    Google Scholar 

  • Kilbourne, E.D., (ed.) (1975) The influenza viruses and influenza. Academic Press, New York London Toronto Sydney San Franscisco

    Google Scholar 

  • Liu, W. (1987) Dynamics of epidemiological models-recurrent outbreaks in autonomous systems. Ph.D. Thesis, Cornell University

    Google Scholar 

  • London, W.E., Yorke, J.A. (1973) Recurrent outbreaks of measles, chicken pox and mumps, I. Seasonal variation in contact rates. Amer. J. Epid. 98, 453–468

    Google Scholar 

  • Longini, I.M., Fine, P.E.M., Thacker, S.B. (1983) Predicting the global spread of new infectious agents. Amer. J. Epid. 123, 383–391

    Google Scholar 

  • Palese, P., Young, J.F. (1982) Variation of influenza A, B, and C viruses. Science 215, 1468–1474

    Article  Google Scholar 

  • Rvachev, L.A., Longini, I.M., Jr. (1985) A mathematical model for the global spread of influenza. Math. Biosci. 75, 3–22

    Article  MATH  MathSciNet  Google Scholar 

  • Selby, P. (ed.) (1982) Influenza models: prospects for development and use. Sandoz Institute for Health and Socio-economic Studies

    Google Scholar 

  • Serfling, R.E. (1963) Methods for current statistical analysis of excess pneumonia-influenza deaths. Publ. Hlth. Rep. 78, 494–506

    Article  Google Scholar 

  • Shope, R.E. (1936) The incidence of neutralizing antibodies for swine influenza virus in the sera of human beings of different ages. J. Exp. Med. 63, 669–684

    Article  Google Scholar 

  • Spicer, C.C. (1979) The mathematical modelling of influenza epidemics. Brit. Med. Bull. 35, 23–28

    Google Scholar 

  • Stuart-Harris, C.H. Schild, G.C. (1976) Influenza, the viruses and the disease. Publishing Sciences Group, Littleton, Mass.

    Google Scholar 

  • Thacker, S.B. (1986) The persistence of influenza A in human population. Epid. Rev. 8, 129–142.

    Google Scholar 

  • Webster, R.G., Laver, W.G., Air, G.M., Schild, G.C. (1982) Molecular mechanisms of variation in influenza viruses. Nature 296, 115–121

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, Wm., Levin, S.A. (1989). Influenza and Some Related Mathematical Models. In: Levin, S.A., Hallam, T.G., Gross, L.J. (eds) Applied Mathematical Ecology. Biomathematics, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61317-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61317-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64789-5

  • Online ISBN: 978-3-642-61317-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics