Advertisement

Series and Integral Representations

  • M. A. Evgrafov
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 13)

Abstract

Infinite series, and their analogues—integral representations, became fundamental tools in mathematical analysis, starting in the second half of the seventeenth century. They have provided the means for introducing into analysis all of the so-called transcendental functions, including those which are now called elementary (the logarithm, exponential and trigonometric functions). With their help the solutions of many differential equations, both ordinary and partial, have been found. In fact the whole development of mathematical analysis from Newton up to the end of the nineteenth century was in the closest way connected with the development of the apparatus of series and integral representations. Moreover, many abstract divisions of mathematics (for example, functional analysis) arose and were developed in order to study series.

Keywords

Singular Point Power Series Integral Representation Analytic Continuation Formal Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I. (Eds): Handbook of mathematical functions with formulas, graphs and mathematical tables. Washington: Nat. Bur. Standards. Appl. Math. Ser. No, 55 XIV (1964), 1046 p, Table Errata. Math. Comput. 21, 747 (1967). Zbl. 171, 385MATHGoogle Scholar
  2. 2.
    Bernshtein, I.N., Gel’fand, S.I.: Meromorphicity of the function Pλ, Funkts. Anal. Prilozh.3,No. 1, 84–85 (1969). English transl.: Funct. Anal. Appl. J, No. 1, 68–69 (1969). Zbl. 208, 152Google Scholar
  3. 3.
    Bieberbach, L.: Analytische Fortsetzung. Berlin: Springer-Verlag, 1955. Zbl. 64,69MATHGoogle Scholar
  4. 4.
    Borel, E.: Leçons sur les séries divergentes. Paris: Gauthier-Villars, 1928. Jrb. 54, 223MATHGoogle Scholar
  5. 5.
    Bourbaki, N.: Eléments d’histoire des mathématiques. Paris: Hermann, 1960. Zbl. 129, 245MATHGoogle Scholar
  6. 6.
    Bourbaki, N.: Fonctions d’une variable réelle. Paris: Hermann 1949/1951. Zbl. 36,168, Zbl. 42, 92. Nouv. ed. 1976. Zbl. 346.26003Google Scholar
  7. 7.
    Bromwich, T.J.: An introduction to the theory of infinite series. London: Macmillan, 1931. Zbl. 4, 7MATHGoogle Scholar
  8. 8.
    Bureau, F.: Divergent integrals and partial differential equations. Commun. Pure Appl. Math. 8, 143–202 (1955). Zbl. 64, 92MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Cesàro, E.: Elementares Lehrbuch der algebraischen Analysis und der Infinitesimalrechnung. Band I, II. Berlin-Leipzig: Teubner, 1904. Jrb. 35, 294Google Scholar
  10. 10.
    Dienes, P.: The Taylor series. New York: Dover Publ., 1957. Zbl 78, 59MATHGoogle Scholar
  11. 11.
    Edwards, R.E.: Fourier series. A modern introduction. Vol I, II Berlin: Springer-Verlag, 1979, 1982. Zbl. 424.42001, Zbl. 599.42001Google Scholar
  12. 12.
    Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sense accepti. Opera omnia Ser. 1, Vol. 25, 1952. Zbl. 49, 195Google Scholar
  13. 13.
    Euler, L.: Institutiones calculi differentialis. Opera Omnia, Ser. 1, Vol. 10,1913Google Scholar
  14. 14.
    Euler, L.: Institutiones calculi integralis. Opera Omnia Ser. 1, Vol. 11, 12, 1913, 1914Google Scholar
  15. 15.
    Euler, L.: Introductio in analysin infinitorum. Opera Omnia Ser. 1, Vol. 8, 9, 1922, 1945. Jrb. 48, 7; Zbl. 60, 11Google Scholar
  16. 16.
    Euler, L.: Letter to scholars. (Russian) Izdanie inta istorii estestvoznaniya i tekhniki Akad. Nauk SSSR, Moscow-Leningrad, 1963. Zbl. 127, 243Google Scholar
  17. 17.
    Evgrafov, M.A.: Asymptotic estimates and entire functions. 1st ed. Moscow: Gostekh. 1957. Zbl. 114, 277 English transi.: New York: Gordon & Breach 1961Google Scholar
  18. 18.
    Evgrafov, M.A.: Analytic functions. 2nd ed. Moscow: Nauka, 1968. Zbl. 157,393 English transl.: (of 1st ed.) Philadelphia-London: Saunders, 1966. Zbl. 147, 326 (Zbl. 144, 70)Google Scholar
  19. 19.
    Evgrafov, M.A.: Asymptotic estimates and entire functions 3rd ed. Moscow: Nauka, 1979. Zbl. 447.30016MATHGoogle Scholar
  20. 20.
    Fejér, L.: Untersuchungen über Fouriersche Reihen. Math. Ann. 58, 501–569 (1904)Google Scholar
  21. 21.
    Fischer, E.: Sur la convergence en moyenne. C.R. Acad. Sei. Paris 144,1022–1024 (1907)MATHGoogle Scholar
  22. 22.
    Gel’fand, I.M., Shapiro, Z.Ya.: Homogeneous functions and their applications. Usp. Mat. Nauk 10. No. 3, 3–70 (1955). Zbl. 65,101. English transi.: Am. Math. Soc. Transi., II. Ser. S, 21–85 (1958)Google Scholar
  23. 23.
    Gel’fand, I.M., Shilov, G.E.: Generalized functions Vol. 1. Properties and operations. Moscow: Fizmatgiz, 1958 Zbl. 91, 111 English transi.: New York and London: Academic Press, 1964. Zbl. 115, 331 Generalized functions, Vol 2. Spaces of fundamental and generalized functions. Moscow: Fizmatgiz 1958. English transi.: New York and London Academic Press, 261 p. 1968. Zbl. 159,183Google Scholar
  24. 24.
    Gelïond, A.O.: Residues and their applications. Moscow: Nauka, 1966. Zbl. 152, 59Google Scholar
  25. 25.
    Gel’fand, A.O.: Calculus of finite differences 3rd ed. Moscow: Nauka, 376 p. 1967. Zbl. 152, 80 (1st ed. 1952. Zbl. 47, 332)Google Scholar
  26. 26.
    Hadamard, J.: Le problème de Cauchy et les équations aux derivées partielles linéaires hyperboliques. Paris: Hermann, 1932. Zbl. 6, 205Google Scholar
  27. 27.
    Hardy, G.H.: Divergent series. Oxford: Clarendon Press, 1949. Zbl. 32, 58MATHGoogle Scholar
  28. 28.
    Hausdorff, F.: Summationsmethoden und Momentfolgen. Math. Z. 9, 269–277 (1921)Google Scholar
  29. 29.
    Hausdorff, F.: Momentprobleme für ein endliches Intervall. Math. Z. 16, 220–248 (1923). Jrb. 49, 193MathSciNetCrossRefGoogle Scholar
  30. 30.
    Knopp, K.: Theorie und Anwendung der unendlichen Reihen. Berlin: Springer-Verlag, 1924. Jrb. 50, 150MATHGoogle Scholar
  31. 31.
    Krull, W.: Allgemeine Bewertungstheorie. JL Reine Angew. Math. 167,160–196 (1932). Zbl. 4,98CrossRefGoogle Scholar
  32. 32.
    Kushnirenko, A.G.: Newton polyhedron and Milnor numbers. Funkts. Anal Prilozh. 9, No. 1, 74–75 (1975). English transi.: Funct. Anal. Appi. 9, 71–72 (1975). Zbl. 328.32008Google Scholar
  33. 33.
    Leonfev, A.F.: Exponential series. Moscow: Nauka, 1976. Zbl. 433.30002Google Scholar
  34. 34.
    Levinson, N.: Gap and density theorems. New York: American Math. Soc., 1941. Zbl. 26, 216Google Scholar
  35. 35.
    Luke, Y.: Mathematical functions and their approximations. New York-San Francisco- London: Academic Press, 1975. Zbl. 318,33001MATHGoogle Scholar
  36. 36.
    Markushevich, A.I.: An historical sketch of the theory of analytic functions. Moscow: Gostekh., 1951. Zbl. 45. 346Google Scholar
  37. 37.
    Nörlund, N.E.: Differenzenrechnung. Berlin: Springer-Verlag, 1924. Jrb. 50, 318Google Scholar
  38. 38.
    Olver, F.W.J.: Asymptotics and special functions. New York-London-Academic Press, 1974. Zbl. 303.41035Google Scholar
  39. 39.
    Paley, R.E.A.C., Wiener, N.: Fourier transforms in the complex domain. New York: American Math. Soc., 1934. Zbl. 11, 16MATHGoogle Scholar
  40. 40.
    Poincaré, H.: Sur les intégrales irrégulières des équations linéaires. Acta Math. 8, 295–344 (1886). Jrb. 18, 273MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Pol, B. van der, Bremmer, H.: Operational calculus based on the two-sided Laplace integral. Cambridge: University Press, 1950. Zbl. 40, 204MATHGoogle Scholar
  42. 42.
    Pólya, G.: Untersuchungen über Lücken und Singularitäten von Potenzreihen. Math. Z. 29, 549–640(1929). Jrb. 55, 186MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Pólya, G.: Untersuchungen über Lücken und Singularitäten von Potenzreihen. II. Ann Math., II. Ser. 34,731–777 (1933). Zbl 8, 62Google Scholar
  44. 44.
    Pólya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis. Band I, II. Berlin: Springer- Verlag, 1925. English transl.: Problems and theorems in analysis. I, II, Berlin: Springer-Verlag, 1972. Jrb. 51, 173 Zbl. 236.00003Google Scholar
  45. 45.
    Riesz, F.: Über orthogonale Funktionensysteme. Gött. Nachr., 116–122 (1907)Google Scholar
  46. 46.
    Riesz, M.: Intégrale de Riemann-Liouville et le problème de Cauchy. Acta Math. 81, 1–223 (1949). Zbl. 33, 276MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Schwartz, L.: Théorie des distributions. I, II. Paris: Hermann, 1950, 1951. Zbl. 37, 73, Zbl. 42, 114Google Scholar
  48. 48.
    Struik, D.: Abriss der Geschichte der Mathematik. Berlin: VEB, Deutscher Verlag der Wissenschaften (1961). Zbl. 93, 2 (Engl. orig. New York: Dover 1948 Zbl. 32,97) 6th ed. Berlin 1976MATHGoogle Scholar
  49. 49.
    Titchmarsh, E.C.: The theory of functions. Oxford: University Press, 1932. Zbl. 5, 210 (2nd ed. 1939)Google Scholar
  50. 50.
    Titchmarsh, E.C.: Introduction to the theory of Fourier integrals Oxford: Clarendon Press, 1937. Zbl. 17, 404Google Scholar
  51. 51.
    Titchmarsh, E.C.: The theory of the Riemann zeta-fu nction. Oxford: Clarendon Press, 1951. Zbl. 42, 79 (2nd ed. 1986; Zbl. 601.10026)Google Scholar
  52. 52.
    Toepler, A.: Bermerkenswerte Eigenschaften der periodischen Reihen. Wiener Anz. 13,205–209 (1876). Jrb. 8, 133Google Scholar
  53. 53.
    Vilenkin, N.Ya.: Special functions and the theory of group representations. Moscow: Nauka, 1965. Zbl. 144, 380 English transl.: Transl. Math. Monographs 22 (Am. Math. Soc. Providence 1968) Paris: Dunod 1969Google Scholar
  54. 54.
    Walker, R.J.: Algebraic curves. Princeton: University Press, 1950. Zbl. 39, 377MATHGoogle Scholar
  55. 55.
    Whittaker, E.T., Watson, G.N.: A course of modem analysis. Cambridge: University Press, 1927. Jrb. 53, 180Google Scholar
  56. 56.
    Widder, D.V.: The Laplace transform. Princeton: University Press, 1941Google Scholar
  57. 57.
    Wiener, N.: The Fourier integral and certain of its applications. Cambridge University Press, 1933. Zbl. 6, 54Google Scholar
  58. 58.
    Zygmund, A.: Trigonometric series. Vol. I, II. Cambridge: University Press, 1959. Zbl. 85, 56Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • M. A. Evgrafov

There are no affiliations available

Personalised recommendations