Advertisement

An Overview of Recent Advances in Hodge Theory

  • Jean-Luc Brylinski
  • Steven Zucker

Abstract

Our aim, in writing this article, is to give a survey of the progress in Hodge theory over the past 15 years. Of course, it was first necessary to decide what we mean by “Hodge theory”! This is by no means an easy question, and our answer to it shaped the contents of the article. Indeed, the nature of the subject has evolved over the years.

References

  1. [A]
    Adams, J.: On the cobar construction. In: Colloque de topologie algébrique (Louvain, 1956). Masson 1957, pp. 81–87Google Scholar
  2. [An]
    Anderson, G.: Cyclotomy and an extension of the Taniyama group. Comp. Math. 57 (1986) 153–217zbMATHGoogle Scholar
  3. [A-V]
    Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace-Beltrami equation on complex manifolds. Publ. Math. I.H.E.S. 25 (1966) 81–130Google Scholar
  4. [Ar]
    Arapura, D.: Hodge theory with local coefficients and fundamental groups of varieties. Bull. Am. Math. Soc. 20 (1989) 169–172zbMATHMathSciNetGoogle Scholar
  5. [Ba 1]
    Barlet, D.: Filtration de Hodge asymptotique et pôles de ∫\f\ . Prépubl. Inst. Henri Cartan 88/7Google Scholar
  6. [Ba 2]
    Barlet, D.: Symétrie de Hodge pour le polynôme de Bernstein-Sato. (Lecture Notes in Mathematics, vol. 1295). Springer 1987, pp. 1–10Google Scholar
  7. [Be 1]
    Beilinson, A.: Higher regulators and values of L-functions. J. Soviet Math. 30 (1985) 2036–2070zbMATHGoogle Scholar
  8. [Be 2]
    Beilinson, A.: Notes on absolute Hodge cohomology. In: Applications of Algebraic X-Theory to Algebraic Geometry and Number Theory. (Contemporary Mathematics, vol. 55, part I). Amer. Math. Soc. 1986, pp. 35–68Google Scholar
  9. [Be 3]
    Beilinson, A.: Height pairing between algebraic cycles. In: K. Ribet (ed.) Current trends in arithmetical algebraic geometry (Contemporary Mathematics, vol. 67). American Mathematical Society 1987, pp. 1–24Google Scholar
  10. [Be 4]
    Beilinson, A.: On the derived category of perverse sheaves. In: K-Theory, Arithmetic and Geometry, Yu. Manin, ed. (Lecture Notes in Mathematics, vol. 1289) Springer, pp. 27–41Google Scholar
  11. [B-B-D]
    Beilinson A, Bernstein, I.N., Deligne, P.: Faisceaux Pervers. (Astérisque, vol. 100). Soc. Math. Fr., 1982Google Scholar
  12. [B-G]
    Beilinson, A., Ginsburg, V.: Mixed categories, Ext-duality and representations (results and conjectures). Preprint 1988Google Scholar
  13. [B-G-G]
    Bernstein, I.N., Gel’fand, I.M., Gel’fand, S.I.: Differential operators on the base affine space and a study of g-modules. In: Lie Groups and their Representation. Halsted 1975, pp. 21–64Google Scholar
  14. [B-M-S]
    Beilinson, A., MacPherson, R., Schechtman, V.: Notes on motivic cohomology. Duke Math. J. 54 (1987) 679–710zbMATHMathSciNetGoogle Scholar
  15. [B1 1]
    Bloch, S.: Deligne groups. Manuscript (unpubl.) c. 1972Google Scholar
  16. [B1 2]
    Bloch, S.: Algebraic K-theory and zeta-functions of elliptic curves. In: Proc. Intern. Congress Helsinki, 1978, pp. 511–515Google Scholar
  17. [B1 3]
    Bloch, S.: Applications of the dilogarithm function in algebraic K-theory and algebraic geometry. In: Proceedings of the International Symposium on Algebraic Geometry 1977. Kinokuniya Book Store, 1978, pp. 103–114Google Scholar
  18. [B1 4]
    Bloch, S.: The dilogarithm and extensions of Lie algebras. (Lecture Notes in Mathematics, vol. 854). Springer, 1981, pp. 1–23Google Scholar
  19. [B15]
    Bloch, S.: Height pairing between algebraic cycles.Google Scholar
  20. [Bl-O]
    Bloch, S, Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. Ec. Norm. Sup. 7 (1974) 181–202zbMATHMathSciNetGoogle Scholar
  21. [B-H]
    Bloom, T., Herrera, M.: The de Rham cohomology of an analytic space. Invent. math. 7 (1969) 275–296zbMATHMathSciNetGoogle Scholar
  22. [Bo 1]
    Borel, A.: Cohomologie de SL n et valeurs de fonctions zêta. Ann. Sci. Ec. Norm. Sup. 7 (1974) 613–636MathSciNetGoogle Scholar
  23. [Bo 2]
    Borel, A., et al.: Intersection Cohomology. (Progress in Mathematics, vol. 50). Birkhäuser, 1984zbMATHGoogle Scholar
  24. [Bo 3]
    Borel, A., et al.: Algebraic D-modules. (Perspective in Mathematics, vol. 2). Academic Press, 1987Google Scholar
  25. [B-K]
    Bousfield, A., Kan, D.: Homotopy limits, completions and localizations. (Lectures Notes in Mathematics, vol. 304). Springer, 1972zbMATHGoogle Scholar
  26. [Br]
    Brieskorn, E.: Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscr. Math. 2 (1970) 103–161zbMATHMathSciNetGoogle Scholar
  27. [Bry 1]
    Brylinski, J.-L.: Cohomologie d’intersection et faisceaux pervers. (Séminaire Bourbaki Exposé 585, February 1982, in: Astérisque, vol.92–93). Soc. Math. Fr, 1982, pp. 129–157Google Scholar
  28. [Bry 2]
    Brylinski, J.-L.: Modules holonomes à singularités régulières et filtration de Hodge. In: Algebraic Geometry. Proceedings, la Rabida 1981. (Lecture Notes in Math, vol.961). Springer, 1982, pp. 1–21. II (Astérisque, vol. 101–102). Soc. Math. Fr, 1983, pp. 75–117Google Scholar
  29. [Bry 3]
    Brylinski, J.-L.: Transformations canoniques, dualité projective, théorie de Lefschetz, transformation de Fourier et sommes trigonométriques. In: Géométrie et Analyse Microlocales. (Astérisque, vol. 140–141). Soc. Math. Fr. 1986, pp. 3–134Google Scholar
  30. [Ca 1]
    Carlson, J.: Extensions of mixed Hodge structures. In: Journées de Géométrie Algébrique d’Angers 1979. Sijthoff and Nordhoff, 1980, pp. 107–127Google Scholar
  31. [Ca 2]
    Carlson, J.: The geometry of the extension class of a mixed Hodge structure. In: Algebraic Geometry, Bowdoin 1985, Proc. Symp. Pure Math. 46, Part 2. Amer. Math. Soc., pp. 199–222Google Scholar
  32. [C-C-M]
    Carlson, J, Clemens, H, Morgan, J.:. On the mixed Hodge structure associated to π3 of a simply-connected projective manifold. Ann. Sci. Ec. Norm. Sup. 14 (1981) 323–338zbMATHMathSciNetGoogle Scholar
  33. [Ca-H]
    Carlson, J., Hain, R: Extensions of variations of mixed Hodge structure. In: Proc. of the Luminy Conference on Hodge Theory, 1987, Astérisque. Soc. Math. Fr. (to appear)Google Scholar
  34. [C-K 1]
    Cattani, E., Kaplan, A.: On the SL(2)-orbits in Hodge theory (with an appendix by P. Deligne). I.H.E.S, preprint M/82/58 (1982)Google Scholar
  35. [C-K 2]
    Cattani, E., Kaplan, A.: Polarized mixed Hodge structures and the monodromy of a variation of Hodge structure. Invent, math. 67 (1982) 101–115zbMATHMathSciNetGoogle Scholar
  36. [C-K 3]
    Cattani, E., Kaplan, A.: Degenerating variations of Hodge structures. In: Proc. of the Luminy Conference on Hodge Theory, 1987. Astérisque, vol. 179–180 (1989) 67–96Google Scholar
  37. [C-K-S 1]
    Cattani, E., Kaplan, A., Schmid, W.: Degeneration of Hodge structures. Ann. Math. 123 (1986) 457–535zbMATHMathSciNetGoogle Scholar
  38. [C-K-S 2]
    Cattani, E., Kaplan, A., Schmid, W.: L2 and intersection cohomologies for a polarizable variation of Hodge structure. Invent. math. 87 (1987) 217–252zbMATHMathSciNetGoogle Scholar
  39. [Ch 1]
    Cheeger, J.: On the Hodge theory of Riemannian pseudomanifolds. In: Geometry of the Laplace operator. Proc. Symp. Pure Math., vol.36, 1980, pp.91–146Google Scholar
  40. [Ch 2]
    Cheeger, J.: Hodge theory of complex cones. In: Analyse et Topologie sur les Espaces Singuliers. (Astérisque, vol. 101–102). Soc. Math. Fr., 1983, pp. 118–134Google Scholar
  41. [C-G-M]
    Cheeger, J., Goresky, M., MacPherson, R.: L2-cohomology and intersection homology of singular algebraic varieties. In: Ann. Math. Studies, vol.102. Princeton Univ. Press, 1982, pp. 303–340Google Scholar
  42. [C-S]
    Cheeger, J., Simons, J.: Differential characters and geometric invariants. In: Geometry and Topology (Lecture Notes in Mathematics, vol.1167). Springer, 1985, pp. 50–80Google Scholar
  43. [Chen 1]
    Chen, K.-T.: Iterated path integrals. Bull. Am. Math. Soc. 83 (1977) 831–879zbMATHGoogle Scholar
  44. [Chen 2]
    Chen, K.-T.: Reduced bar constructions on de Rham complexes. In: Algebra, Topology and Category Theory (ed. A. Heller and M. Tierney). Academic Press, 1976, pp. 19–32Google Scholar
  45. [Chen 3]
    Chen, K.-T.: Circular bar construction. J. Alg. 57 (1979) 466–483zbMATHGoogle Scholar
  46. [Cl 1]
    Clemens, C.H.: Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities. Trans. Am. Soc. 136 (1969) 93–108zbMATHMathSciNetGoogle Scholar
  47. [Cl 2]
    Clemens, C.H.: Degeneration of Kahler manifolds. Duke Math. J. 44 (1977) 215–290zbMATHMathSciNetGoogle Scholar
  48. [Co]
    Corlette, K: Flat G-bundles with canonical metrics. J. Diff. Geom. 28 (1988) 361–382zbMATHMathSciNetGoogle Scholar
  49. [D l]
    Deligne, P.: Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Publ. Math. I.H.E.S. 35 (1968) 107–126zbMATHGoogle Scholar
  50. [D 2]
    Deligne, P.: Equations différentielles à points singuliers réguliers. (Lecture Notes in Mathematics, vol. 163). Springer, 1970zbMATHGoogle Scholar
  51. [D 3]
    Deligne, P.: Travaux de Griffiths. Séminaire Bourbaki, Exposé 376, June 1970. (Lecture Notes in Mathematics, vol. 180). Springer, 1971, pp. 213–237Google Scholar
  52. [D 4]
    Deligne, P.: Théorie de Hodge I. Actes, Congrès Intern. Math. Nice 1970, pp. 425–430. II, Publ. Math. I.H.E.S. 40 (1971) 5–58. Ill, Publ. Math. I.H.E.S. 44 (1974) 5–77Google Scholar
  53. [D 5]
    Deligne, P.: La conjecture de Weil I. Publ. Math. I.H.E.S. 43 (1974) 273–308. II, Publ. Math. I.H.E.S. 52 (1980) 137–252Google Scholar
  54. [D 6]
    Deligne, P.: Structures de Hodge mixtes réelles. Appendix to: On the SL(2)- orbits in Hodge theory, by E. Cattani and A. KaplanGoogle Scholar
  55. [D 7]
    Deligne, R: Théorie de Hodge irrégulière. Handwritten notes 1984Google Scholar
  56. [D 8]
    Deligne, P.: Un théorème de finitude pour la monodromie. In: Discrete Groups in Geometry and Analysis (Papers in the Honor of G. D. Mostow on His Sixtieth Birthday). Progress in Mathematics, vol. 67. Birkhäuser, 1987, pp. 1–19Google Scholar
  57. [D 9]
    Deligne, P.: Valeurs de fonctions L et périodes d’intégrales. In: Automorphic Forms, Representations and L-functions. Proc. Symp. Pure Math, vol. 33, Part 2. Amer. Math. Soc. 1979, pp. 313–346Google Scholar
  58. [D-G-M-S]
    Deligne, P, Griffiths, P, Morgan, J, Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. math. 29 (1975) 245–274zbMATHMathSciNetGoogle Scholar
  59. [D-M-O-S]
    Deligne, P, Milne, J.-S, Ogus, A, Shih, K.-Y.: Hodge cycles, motives and Shimura varieties. (Lecture Notes in Mathematics, vol. 900). Springer, 1982zbMATHGoogle Scholar
  60. [Du 1]
    Du Bois, P.: Complexe de de Rham filtré d’une variété singulière. Bull. Soc. Math. Fr. 109 (1981) 41–81zbMATHGoogle Scholar
  61. [Du 2]
    Du Bois, P.: Structure de Hodge mixte sur la cohomologie évanescente. In: Ann. Inst. Fourier 35 (1985) 191–213zbMATHGoogle Scholar
  62. [Dur]
    Durfee, A.: A naive guide to mixed Hodge theory. In: Proc. Symp. Pure Math, vol.40, part I. Amer. Math. Soc. 1983, pp.313–320Google Scholar
  63. [D-H]
    Durfee, A, Hain, R: Mixed Hodge structures on the homotopy of links. Math. Ann. 280 (1988) 69–83zbMATHMathSciNetGoogle Scholar
  64. [D-S]
    Durfee, A, Saito, M.: Mixed Hodge structures on intersection cohomology of links. Compos. Math. 76 (1990) 49–67zbMATHMathSciNetGoogle Scholar
  65. [E l]
    El Zein, F.: Complexe dualisant et applications à la classe fondamentale d’un cycle. Mémoire Bull. Soc. Math. Fr. 58 (1978) 5–66Google Scholar
  66. [E 2]
    El Zein, F.: Complexe de Hodge mixte filtré. CRAS Paris 295 (1982) 669–672zbMATHGoogle Scholar
  67. [E 3]
    El Zein, F.: Mixed Hodge structures. Proc. Symp. Pure Math., vol.40, Part I, 1983, 345–352Google Scholar
  68. [E 4]
    El Zein, F.: Dégénérescence diagonale I. C.R.A.S. Paris 296 (1983) 51–54. II, C.R.A.S. Paris 296 (1983) 199–202Google Scholar
  69. [E 5]
    El Zein, F.: Suites spectrales de structures de Hodge mixtes. (Astérisque, vol. 130). Soc. Math. Fr. 1985, pp. 308–329Google Scholar
  70. [E 6]
    El Zein, F.: Théorie de Hodge à coefficients: étude locale. C.R.A.S. Paris 307 (1988) 593–598zbMATHGoogle Scholar
  71. [E 7]
    El Zein, F.: Théorie de Hodge des cycles évanescents. Ann. Sci. Ec. Norm. Sup. 19 (1986) 107–194zbMATHGoogle Scholar
  72. [E 8]
    El Zein, F.: Mixed Hodge structures. Trans. Amer. Math. Soc. 275 (1983) 71–106MathSciNetGoogle Scholar
  73. [E-Z]
    El Zein, F, Zucker, S.: Extendability of normal functions associated to algebraic cycles. In: Topics in Transcendental Algebraic Geometry, P. Griffiths, ed. Princeton University Press, vol. 106, 1986, pp. 269–288Google Scholar
  74. [E-V]
    Esnault, H, Viehweg, E.: Deligne-Beilinson cohomology. In: Beilinson’s Conjectures on Special Values of L-functions. (Perspectives in Mathematics, vol.4). Academic Press, pp.43–91Google Scholar
  75. [F 1]
    Faltings, G.: Arakelov’s theorem for abelian varieties. Invent. math. 73 (1983) 337–347zbMATHMathSciNetGoogle Scholar
  76. [F 2]
    Faltings, E.: p-adic Hodge theory. J. Amer. Math. Soc. 1 (1988) 255–299zbMATHMathSciNetGoogle Scholar
  77. [Fr]
    Friedman, S.: Global smoothings of varieties with normal crossings. Ann. Math. 118 (1983) 75–114zbMATHGoogle Scholar
  78. [G]
    Gabber, O.: Pureté de la cohomologie de Goresky-MacPherson. Prépublication I.H.E.S. 1981Google Scholar
  79. [Gaf 1]
    Gaffney, M.: A special Stokes’ theorem for complete Riemannian manifolds. Ann. Math. 60 (1954) 140–145zbMATHMathSciNetGoogle Scholar
  80. [Gaf 2]
    Gaffney, M.: Hilbert space methods in the theory of harmonic integrals. Trans. Amer. Math. Soc. 78 (1955) 426–444zbMATHMathSciNetGoogle Scholar
  81. [Gi]
    Gillet, H.: Deligne homology and Abel-Jacobi maps. Bull. Amer. Math. Soc. 10 (1984) 284–288MathSciNetGoogle Scholar
  82. [Go]
    Godement, R.: Topologie Algébrique et Théorie des Faisceaux. Hermann, 1958zbMATHGoogle Scholar
  83. [G-Mi]
    Goldman, W., Millson, J.: The deformation theory of representations of fundamental groups of compact Kâhler manifolds. Publ. Math. I.H.E.S. 67 (1988) 43–96zbMATHMathSciNetGoogle Scholar
  84. [G-M]
    Goresky, M., MacPherson, R.: Intersection homology. Topology 19 (1980) 77–129. II, Invent, math. 72 (1983)MathSciNetGoogle Scholar
  85. [Gr 1]
    Griffiths, P.: Periods of integrals on algebraic manifolds I. Amer. J. Math. 90 (1968) 568–626. II, Amer. J. Math. 90 (1968) 805–865. III, Publ. Math. H.E.S. (1970) 228–296Google Scholar
  86. [Gr 2]
    Griffiths, P.: Algebraic cycles on algebraic manifolds. In: Algebraic Geometry. (Papers presented at the Bombay Colloquium 1969). Oxford University Press, 1969, pp. 93–191Google Scholar
  87. [Gr 3]
    Griffiths, P.: On the periods of certain rational integrals. Ann. Math. 90 (1969) 460–541zbMATHGoogle Scholar
  88. [Gr 4]
    Griffiths, P.: Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems. Bull. Amer. Math. Soc. 76 (1970), 228–296zbMATHMathSciNetGoogle Scholar
  89. [Gr-S]
    Griffiths, S., Schmid, W.: Recent developments in Hodge theory: A discussion of techniques and results. In: Proc. Bombay Colloq. on Discrete Subgroups of Lie Groups (Bombay, 1973). Oxford University Press, 1975, pp. 31–127Google Scholar
  90. [Gro]
    Grothendieck, A.: On the de Rham cohomology of algebraic varieties. Publ. Math. I.H.E.S. 29 (1966) 96–103Google Scholar
  91. [G-NA-P]
    Guillén, F., Navarro Aznar, V., Puerta, F.: Théorie de Hodge via schémas cubiques. Preprint 1982Google Scholar
  92. [G-P]
    Guillén, F., Puerta, F.: Hyperrésolutions cubiques et applications à la théorie de Hodge-Deligne. In: Hodge Theory Proceedings, Sant Cugat, 1985. (Lecture Notes in Mathematics, vol. 1246). Springer, 1987Google Scholar
  93. [G-NA-PG-P]
    Guillén, F., Navarro Aznar, V., Pascual-Gainza, P., Puerta, F.: Hyperrésolutions cubiques et descente cohomologique. (Lecture Notes in Mathematics, vol. 1335). Springer, 1988zbMATHGoogle Scholar
  94. [H 1]
    Hain, R.: The de Rham homotopy theory of complex algebraic varieties I, II. K-Theory 1 (1987) 271–324, 481–497zbMATHMathSciNetGoogle Scholar
  95. [H 2]
    Hain, R.: The geometry of the mixed Hodge structure on the fundamental group. In: Proc. Symp. Pure Math. Amer. Math. Soc. 1987, pp.247–282Google Scholar
  96. [H-M]
    Hain, R., MacPherson, R.: Higher logarithms. I11. J. Math. 34, no. 2 (1990) 392–475zbMATHMathSciNetGoogle Scholar
  97. [H-Z1]
    Hain, R, Zucker, S.: Unipotent variations of mixed Hodge structure. Invent. math. 88 (1987) 83–124zbMATHMathSciNetGoogle Scholar
  98. [H-Z2]
    Hain, R, Zucker, S.: A guide to unipotent variations of mixed Hodge structures. In: Hodge Theory Proceedings, Sant Cugat, 1985. (Lecture Notes in Mathematics, vol. 1246). Springer, 1987, pp. 92–106Google Scholar
  99. [Ha]
    Harris, B.: Harmonic volumes. Acta Math. 150 (1983) 91–123zbMATHMathSciNetGoogle Scholar
  100. [Hi]
    Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79 (1964) 109–326zbMATHMathSciNetGoogle Scholar
  101. [Hit]
    Hitchin, N.: The self-duality equation over a Riemann surface. Proc. Lond. Math. Soc. 55 (1987) 59–126zbMATHMathSciNetGoogle Scholar
  102. [Ho]
    Hodge, W.V.D.: The Theory and Applications of Harmonic Integrals. Cambridge University Press, 1941Google Scholar
  103. [H-P]
    Hsiang, W.-C, Pati, V.: L2-cohomology of normal algebraic surfaces. Invent. math. 81 (1985) 395–412zbMATHMathSciNetGoogle Scholar
  104. [J]
    Janssen, U.: Deligne homology, Hodge-D conjecture and motives. In: Beilin- son’s Conjectures on Special Values of L-functions. (Perspectives in Mathematics, vol.4). Acad. Press, 1988, pp.305–372Google Scholar
  105. [K 1]
    Kashiwara, M.: On the maximally overdetermined system of linear differential equations I. Publ. RIMS Kyoto University 10 (1974/75) 563–579 563–579zbMATHGoogle Scholar
  106. [K 2]
    Kashiwara, M.: B-functions and holonomic systems, rationality of roots of B-functions. Invent, math. 38 (1976) 33–53zbMATHMathSciNetGoogle Scholar
  107. [K 3]
    Kashiwara, M.: On the holonomic systems of differential equations II. Invent, math. 49 (1978) 121–135zbMATHMathSciNetGoogle Scholar
  108. [K 4]
    Kashiwara, M.: Vanishing cycles and holonomic systems of differential systems of differential equations. In: Algebraic Geometry, M. Raynaud and T. Shioda, eds. (Lecture Notes in Mathematics, vol. 1016). Springer, 1983, pp. 134–142Google Scholar
  109. [K 5]
    Kashiwara, M.: The asymptotic behavior of a variation of polarized Hodge structure. Publ. RIMS. Kyoto University 21 (1985) 853–875zbMATHMathSciNetGoogle Scholar
  110. [K 6]
    Kashiwara, M.: A study of a variation of mixed Hodge structure. Publ. RIMS. Kyoto University 22 (1986) 991–1024zbMATHMathSciNetGoogle Scholar
  111. [K-K l]
    Kashiwara, M, Kawai, T.: On the holonomic systems of microdifferential equations III. Systems with regular singularities. Publ. R.I.M.S. Kyoto University 17 (1981) 813–979zbMATHMathSciNetGoogle Scholar
  112. [K-K 2]
    Kashiwara, M, Kawai, T.: The Poincaré lemma for variations of polarized Hodge structures. Publ. R.I.M.S. Kyoto University 23 (1987) 345–407zbMATHMathSciNetGoogle Scholar
  113. [K-K 3]
    Kashiwara, M, Kawai, T.: Hodge structures and holonomic systems. Proc. Japan Acad. (A) 62 (1986) 1–4zbMATHMathSciNetGoogle Scholar
  114. [Ka]
    Katz, N.: The regularity theorem in algebraic geometry. In: Actes, Congrès Intern. Math. Nice 1970, 1 (1970) 437–443Google Scholar
  115. [La]
    Landman, A.: On the Picard-Lefschetz transformation for algebraic manifolds acquiring general singularities. Trans. Amer. Math. Soc. 181 (1973) 89–126zbMATHMathSciNetGoogle Scholar
  116. [Lau]
    Laumon, S.: Sur la catégorie dérivée des D-modules filtrés. In: Algebraic Geometry, M. Raynaud and T. Shioda, eds. (Lecture Notes in Mathematics, vol. 1016). Springer, 1983, pp. 151–237Google Scholar
  117. [Le]
    Lê, D.-T.: Sur les noeuds algébriques. Comp. Math. 25 (1972) 281–321zbMATHGoogle Scholar
  118. [Lef]
    Lefschetz, S.: L’analysis Situs et la Géométrie Algébrique. Gauthier-Villars, 1924zbMATHGoogle Scholar
  119. [Li]
    Lieberman, D.: Higher Picard varieties. Amer. J. Math. 90 (1968) 1165–1199zbMATHMathSciNetGoogle Scholar
  120. [Loe]
    Loeser, F.: Evaluation d’intégrales et théorie de Hodge. In: Hodge Theory Proceedings, Sant Cugat, 1985. (Lecture Notes in Mathematics, vol. 1246). Springer, 1987, pp. 125–142Google Scholar
  121. [Lo]
    Looijenga, E.: L2-cohomology of locally symmetric varieties. Comp. Math. 67 (1988) 3–20zbMATHMathSciNetGoogle Scholar
  122. [M]
    Malgrange, B.: Polynôme de Bernstein-Sato et cohomologie évanescente. In: Analyse et Topologie sur les Espaces Singuliers. (Astérisque, vol. 101–102). Soc. Math. Fr. 1983, pp. 243–267Google Scholar
  123. [M-V]
    MacPherson, R, Vilonen, K.: Elementary construction of perverse sheaves. Invent, math. 84 (1986) 403–435zbMATHMathSciNetGoogle Scholar
  124. [Me 1]
    Mebkhout, Z.: Une équivalence de catégories et une autre équivalence de catégories. Ark. Math. 50 (1984) 51–88MathSciNetGoogle Scholar
  125. [Me 2]
    Mebkhout, Z.: Le formalisme des six opérations de Grothendieck pour les D-modules cohérents. (Travaux en cours, vol. 35). Hermann, 1989Google Scholar
  126. [Mi]
    Milne, J.S.: Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In: Automorphic Forms, Shimura Varieties and L-Functions, vol. I. Academic Press, 1990, pp. 283–414Google Scholar
  127. [Mo]
    Morgan, J.: The algebraic topology of smooth algebraic varieties. Publ. Math. I.H.E.S. 48 (1978) 137–204. Correction, Publ. Math. I.H.E.S. 64 (1986)zbMATHGoogle Scholar
  128. [N 1]
    Nagase, M.: Remarks on the L2-cohomology of singular algebraic surfaces. J. Math. Soc. Japan 41 (1989) 97–116zbMATHMathSciNetGoogle Scholar
  129. [N 2]
    Nagase, M.: Pure Hodge structure on the harmonic L2-forms on singular algebraic surfaces. Publ. RIMS. Kyoto University 24 (1988) 1005–1023zbMATHMathSciNetGoogle Scholar
  130. [NA 1]
    Navarro Aznar, V.: Sur la théorie de Hodge-Deligne. Invent, math. 90 (1987) 11–76zbMATHMathSciNetGoogle Scholar
  131. [NA 2]
    Navarro Aznar, V.: Sur la théorie de Hodge des variétés algébriques à singularités isoleés. (Astérisque, vol. 130). Soc. Math. Fr. 1985, pp. 272–307Google Scholar
  132. [NA 3]
    Navarro Aznar, V.: Sur les structures de Hodge mixtes associées aux cycles évanescents. (Lecture Notes in Mathematics, vol. 1246). Springer, 1987, pp. 143–153Google Scholar
  133. [O]
    Ohsawa, T.: On extension of Hodge theory to Kähler spaces with isolated singularities of restricted type. Publ. RIMS. Kyoto University 24 (1988) 253–263zbMATHMathSciNetGoogle Scholar
  134. [P]
    Pham, FStructures de Hodge mixtes associées à un germe de fonction à point singulier isolé. In: Analyse et Topologie sur les Espaces Singuliers. (Astérisque, vol. 101–102). Soc. Math. Fr. 1983, pp. 268–285Google Scholar
  135. [Pu]
    Pulte, M.: The fundamental group of a Riemann surface: Mixed Hodge structures and algebraic cycles. Duke J. Math. 57 (1988) 721–760zbMATHMathSciNetGoogle Scholar
  136. [Ra]
    Ramis, J.-P.: Variations sur le thème GAGA. In: P. Lelong, H. Skoda (eds.) Séminaire Pierre Lelong – Henri Skoda (Analyse) Année 1976/77. (Lecture Notes in Mathematics, vol.694). Springer, 1978, pp.228–289Google Scholar
  137. [Ram 1]
    Ramakrishnan, D.: A regulator for curves via the Heisenberg group. Bull. Amer. Math. Soc. 5 (1981) 191–195zbMATHMathSciNetGoogle Scholar
  138. [Ram 2]
    Ramakrishnan, D.: Regulators, algebraic cycles and values of L-functions. In: Algebraic K-Theory and algebraic number theory. (Contemporary Mathematics, vol.83). Amer. Math. Soc. 1989, pp. 183–310Google Scholar
  139. [Ram 3]
    Ramakrishnan, D.: Valeurs de fonctions L des surfaces d’Hilbert-Blumenthal en s = 1. C.R.A.S. Paris 301 (1985) 809–812zbMATHMathSciNetGoogle Scholar
  140. [Ram 4]
    Ramakrishnan, D.: Periods of integrals arising from K 1 of Hilbert- Blumenthal surfaces. Preprint 1984Google Scholar
  141. [Ram 5]
    Ramakrishnan, D.: Arithmetic of Hilbert-Blumenthal surfaces. In: Number theory (Montréal 1985) CMS Conf. Proc. Amer. Math. Soc. 1987, pp. 285–370Google Scholar
  142. [Ram 6]
    Ramakrishnan, D.: Analogs of the Bloch-Wigner function for higher polylogarithms. In: Number theory (Montréal 1985) CMS Conf. Proc. Amer. Math. Soc. 1987, pp. 371–376Google Scholar
  143. [R-S-S]
    Rapoport, M., Schappacher, N, Schneider, P.: Beilinson’s Conjectures on Special Values of L-functions. (Perspectives in Math., vol.4). Academic Press, 1988zbMATHGoogle Scholar
  144. [R-Z]
    Rapoport, M, Zink, T.: Über die lokale Zetafunktionen von Shimuravarietäten. Monodromie filtration und verschwindende Zyklen in ungleicher Charakteristik. Invent, math. 68 (1982) 21–101zbMATHMathSciNetGoogle Scholar
  145. [S]
    Saito, K.: Period mapping associated to a primitive form. Publ. RIMS. Kyoto University 19 (1983) 1231–1264zbMATHGoogle Scholar
  146. [Sa 1]
    Saito, MGauss-Manin systems and mixed Hodge structure. Proc. Japan Acad. Sci. (A) 581982) 29–32. Supplement in: Analyse et Topologie sur les Espaces Singuliers. (Astérisque, vol. 101–102). Soc. Math. Fr. 1983, pp. 320–331zbMATHGoogle Scholar
  147. [Sa 2]
    Saito, M.: Hodge filtrations on Gauss-Manin systems. J. Fac. Sci. Univ. Tokyo, Sect. IA (Math.) 30 (1984) 489–498. II, Proc. Japan Acad. (A) 59 (1983)zbMATHMathSciNetGoogle Scholar
  148. [Sa 3]
    Saito, M.: Modules de Hodge polarisables. Publ. RIMS. Kyoto University 24 (1988) 849–995zbMATHGoogle Scholar
  149. [Sa 4]
    Saito, M.: Hodge structure via filtered D-modules. In: Astérisque, vol. 130, 1985, pp. 342–351Google Scholar
  150. [Sa 5]
    Saito, M.: Mixed Hodge modules. Proc. Japan Acad. (A) 62 (1986) 360–363zbMATHGoogle Scholar
  151. [Sa 6]
    Saito, M.: On the derived category of mixed Hodge modules. Proc. Japan Acad. (A) 62 (1986) 364–366zbMATHGoogle Scholar
  152. [Sa 7]
    Saito, M.: On the structure of Brieskorn lattice. Ann. Inst. Fourier Grenoble 39 (1989) 27–72zbMATHMathSciNetGoogle Scholar
  153. [Sa 8]
    Saito, M.: Vanishing cycles and mixed Hodge modules. Preprint 1988Google Scholar
  154. [Sa 9]
    Saito, M.: Decomposition theorem for proper Kähler morphisms. Preprint I.H.E.S./M/88/34Google Scholar
  155. [Sa 10]
    Saito, M.: Mixed Hodge modules and admissible variations. CRAS Paris 309 (1989) 351–356zbMATHGoogle Scholar
  156. [Sa 11]
    Saito, M.: Mixed Hodge modules. Publ. RIMS Kyoto University 26 (1990) 221–333zbMATHGoogle Scholar
  157. [Sa 12]
    Saito, M.: Introduction to mixed Hodge modules. RIMS-605, preprint 1987Google Scholar
  158. [Sa-Z]
    Saito, M, Zucker, S.: The kernel spectral sequence of vanishing cycles. Duke Math. J. (to appear)Google Scholar
  159. [Sap]
    Saper, L.: L2-cohomology and intersection cohomology of certain algebraic varieties with isolated singularities. Invent. math. 82 (1985) 207–255zbMATHMathSciNetGoogle Scholar
  160. [Sap-S]
    Saper, L, Stern, M.: L2-cohomology of arithmetic varieties. Proc. Nat Acad. Sci. USA 84 (1987) 5516–5519zbMATHMathSciNetGoogle Scholar
  161. [Sch]
    Scherk, J.: A note on two local Hodge filtrations. In: Proc. Symp. Pure Math. 46, Part 2. Amer. Math. Soc. 1983, pp. 473–477Google Scholar
  162. [Sch-St]
    Scherk, J, Steenbrink, J.: On the mixed Hodge structure of the Milnor fiber. Math. Ann. 271 (1985) 641–665zbMATHMathSciNetGoogle Scholar
  163. [Sc]
    Schmid, W.: Variation of Hodge structure: The singularities of the period mapping. Invent. math. 22 (1973) 211–319zbMATHMathSciNetGoogle Scholar
  164. [Schn]
    Schneider, P.: Introduction to the Beilinson conjectures. In: Beilinson’s Conjectures on Special Values of L-functions. (Perspectives in Math, vol. 4). Academic Press, 1988, pp. 1–35Google Scholar
  165. [Se]
    Serre, J.P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier 6 (1955–56) 1–42zbMATHGoogle Scholar
  166. [SGA 2]
    Grothendieck, A.: Séminaire de Géométrie Algébrique du Bois-Marie. Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globaux. North-Holland, 1968zbMATHGoogle Scholar
  167. [SGA 4]
    Artin, M, Grothendieck, A, Verdier, J.-L.: Séminaire de Géométrie Algébrique du Bois-Marie. Théorie des topos et cohomologie étale des schémas (SGA 4). (Lecture Notes in Mathematics, vol. 269). Springer, 1972. II, (Lecture Notes in Mathematics, vol.270). 1972. Ill, (Lecture Notes in Mathematics, vol. 305), 1973Google Scholar
  168. [SGA 7]
    Grothendieck, A.: Séminaire de Géométrie Algébrique du Bois-Marie. Groupes de Monodromie en Géométrie Algébrique (SGA 7 I). (Lecture Notes in Mathematics, vol. 288). Springer, 1972. Groupes de Monodromie en Géométrie Algébrique (SGA 7 II), (Lecture Notes in Mathematics, vol. 340). Springer, 1973Google Scholar
  169. [Si 1]
    Simpson, C.: Constructing variations of Hodge structures using Yang-Mills theory and application to uniformization. J. Amer. Math. Soc. 1 (1988) 867–918zbMATHMathSciNetGoogle Scholar
  170. [Si 2]
    Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety. Preprint 1989Google Scholar
  171. [Si 3]
    Simpson, C.: Higgs bundles and local systems. Preprint 1989. Publ. Math., Inst. Hautes Etudes Sci. 75 (1992) 5–95zbMATHGoogle Scholar
  172. [Si 4]
    Simpson, C.: Harmonic bundles on non-compact curves. Preprint 1989. J. Am. Math. Soc. 3 (1990) 713–770zbMATHGoogle Scholar
  173. [So 1]
    Soulé, C.: Régulateurs. Exposé Séminaire Bourbaki 644, in: Séminaire Bourbaki 84/85. (Astérisque, vol. 133–134). Soc. Math. Fr. 1986, pp. 237–253Google Scholar
  174. [So 2]
    Soulé, C.: Connexions et classes caractéristiques de Beilinson. In: Algebraic K-Theory and Algebraic Number Theory. (Contemporary Mathematics, vol. 83). Amer. Math. Soc. 1989, pp. 349–376Google Scholar
  175. [St 1]
    Steenbrink, J.: Limits of Hodge structures. Invent. math. 31 (1976) 229–257zbMATHMathSciNetGoogle Scholar
  176. [St 2]
    Steenbrink, J.: Mixed Hodge structures on the vanishing cohomology. In: Real and Complex Singularities. Sijthoff and Noordhoff, 1977, pp. 525–563Google Scholar
  177. [St 3]
    Steenbrink, J.: Mixed Hodge structures associated with isolated singularities. In: Proc. Symp. Proc. Pure Math. Amer. Math. Soc., vol.40, Part 2, 1983, pp. 513–536MathSciNetGoogle Scholar
  178. [St 4]
    Steenbrink, J.: The spectrum of hypersurface singularities. In: Proc. of the Luminy Conference on Hodge Theory, 1987. Astérisque. Soc. Math. Fr. (to appear)Google Scholar
  179. [St-vD]
    Steenbrink, J., van Doom, R.: A supplement to the monodromy theorem. Abh. Math. Sem. Universität Hamburg 59 (1989)Google Scholar
  180. [St-Z]
    Steenbrink, J., Zucker, S.: Variation of mixed Hodge structure, I. Invent. math. 80 (1985) 489–542zbMATHMathSciNetGoogle Scholar
  181. [Su]
    Sullivan, D.: Infinitesimal computations in topology. Publ. Math. I.H.E.S. 47 (1977) 269–331zbMATHGoogle Scholar
  182. [Tan]
    Tanisaki, T.: Hodge modules, equivariant K-theory and Hecke algebras. Publ. RIMS. Kyoto University 23 (1987) 841–879zbMATHMathSciNetGoogle Scholar
  183. [Tat]
    Tate, J.: Les conjectures de Stark sur les fonctions L d’Artin en s= 0, notes d’un cours à Orsay (rédigées par D. Bernardi et N. Schappacher). (Progress in Mathematics, vol.47). Birkhäuser, 1984Google Scholar
  184. [TTAG]
    Topics in Transcendental Algebraic Geometry. P. Griffiths, ed. (Ann. of Math. Study, vol. 106). Princeton University Press, 1984zbMATHGoogle Scholar
  185. [Va 1]
    Varchenko, A.: The asymptotics of holomorphic forms determine a mixed Hodge structure. Soviet Math. Dokl. 22 (1980) 772–775zbMATHGoogle Scholar
  186. [Va2]
    Varchenko, A.: Asymptotic Hodge structure in the vanishing cohomology. Math. USSR Izv. 18 (1982) 469–512zbMATHGoogle Scholar
  187. [Va 3]
    Varchenko, A.: On the monodromy operator in vanishing cohomology and the operator of multiplication by f in the local ring. Soviet Math. Dokl. 24 (1982) 248–252Google Scholar
  188. [Va 4]
    Varchenko, A.: A lower bound for the codimension of the strata µ = const in terms of the mixed Hodge structure. Moscow Univ. Math. Bull. 37–6 (1982) 30–33Google Scholar
  189. [Ve 1]
    Verdier, J.-L.: Stratifications de Whitney et théorème de Bertini-Sard. Invent. math. 36 (1976) 295–312zbMATHMathSciNetGoogle Scholar
  190. [Ve 2]
    Verdier, J.-L.: Catégories dérivées, état 0. Séminaire de Géométrie Algébrique du Bois-Marie (SGA 1/2) (Lecture Notes in Mathematics, vol. 569). Springer, 1977, pp.262–311Google Scholar
  191. [Ve 3]
    Verdier, J.-L.: Extension of a perverse sheaf over a closed subspace. (Systèmes différentiels et Singularités. Astérisque, vol. 130). Soc. Math. Fr., 1985, pp. 210–217Google Scholar
  192. [Z 1]
    Zucker, S.: Hodge theory with degenerating coefficients: L2-cohomology in the Poincaré metric. Ann. Math. 109 (1979) 415–476zbMATHMathSciNetGoogle Scholar
  193. [Z 2]
    Zucker, S.: Variation of mixed Hodge structure. II, Invent. math. 80 (1985) 543–565zbMATHMathSciNetGoogle Scholar
  194. [Z 3]
    Zucker, S.: L2-cohomology of warped products and arithmetic groups. Invent. math. 70 (1982) 169–218zbMATHMathSciNetGoogle Scholar
  195. [Z4]
    Zucker, S.: Degeneration of mixed Hodge structures. In: Proc. Symp. Pure Math. Amer. Math. Soc, vol.46, 1987, pp.283–293MathSciNetGoogle Scholar
  196. [Z 5]
    Zucker, S.: The Hodge structures on the intersection homology of varieties with isolated singularities. Duke Math. J. 55 (1987) 603–616zbMATHMathSciNetGoogle Scholar
  197. [Z 6]
    Zucker, S.: L2-cohomology and intersection homology of locally symmetric varieties III. In: Théorie de Hodge: Luminy, Juin 1987. (Astérisque, vol. 179–180). Soc. Math. Fr. 1989, pp. 245–278Google Scholar
  198. [Z 7]
    Zucker, S.: Locally homogeneous variations of Hodge structure. L’Enseign. Math. 27 (1981) 243–276zbMATHMathSciNetGoogle Scholar
  199. [Z 8]
    Zucker, S.: The Cheeger-Simons invariant as a Chern class. In: Algebraic Analysis, Geometry and Number Theory. (Proc. JAMI Inaugural Conference). JHU Press, 1989, pp. 397–417Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jean-Luc Brylinski
  • Steven Zucker

There are no affiliations available

Personalised recommendations