Advertisement

Spectral Hole Burning Studies of Photosystem II Reaction Centers: Excited State Structure, Charge Separation and Energy Transfer Dynamics

  • G. J. Small
  • R. Jankowiak
  • M. Seibert
  • C. F. Yocum
  • D. Tang
Conference paper
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 6)

Abstract

Spectral hole burning spectroscopy [1] has led to an improvement in the resolution of the optical spectra of photosynthetic protein-chlorophyll (Chl) complexes of 2–4 orders of magnitude [2]. As a result the level of detail available on the coupling of Chl optical transitions to intramolecular Chl modes and phonons (both delocalized and localized) is at an unprecedented level. Hole burning can also provide information on the early time (picosecond) events of the photosynthetic unit which are inaccessible by time domain techniques. For example, the primary charge separation process in bacterial RC was shown to occur subsequent to thennalization of relevant intramolecular and phonon modes [2]. Rapid thennalization had been assumed in theories for charge separation [3]. It was proven that ultra-fast (femtosecond) decay of the primary electron donor (PED) state, P*, of bacterial RC does not occur prior to primary charge separation [2,4]. Hole burning has unraveled the structure underlying the relatively broad PED state absorption profiles, P870 and P960, of Rb. sphaeroides and Rps. viridis; e.g., a lengthy Franck-Condon progression in an intennolecular special pair “marker” mode was identified and the coupling to low frequency (≈ 25 cm−1 phonons characterized [2]. On the basis of the total electron-phonon coupling strength (ST0TAL ~ 3.5) it was concluded that P* possesses significant charge-transfer character, in agreement with Stark measurements [4].

Keywords

Reaction Center Charge Separation Special Pair Hole Spectrum Hole Burning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnson, S. G., Lee. I.-J., Small, G. J. in Chlorophylls, Scheer, H., Ed., CRC Press: Boca Raton, Florida, 1990, in print.Google Scholar
  2. 2.
    Tang, D., Johnson, S. G., Jankowiak, R., Hayes, J. M., Small, G. J., Tiede, D. M. in Perspectives in Photosynthesis, Jortner, J. and Pullman, B., Eds., Kluwer Academic Press: Dordrecht/Boston/London, 1989, pp. 99–120.Google Scholar
  3. 3.
    Jortner, J. Biochim. Biophys. Acta 1980, 594, 193–230.PubMedGoogle Scholar
  4. 4.
    Johnson, S. G., Tang, D., Jankowiak, R., Hayes, J. M., Small, G. J., Tiede, D. M. J. Phys. Chem. 1990, submitted.Google Scholar
  5. 5.
    Jankowiak, R., Tang, D., Small, G. J., Seibert, M. J. Phys. Chem. 1989, 93, 1649–1654.CrossRefGoogle Scholar
  6. 6.
    Tang, D., Jankowiak, R., Yocum, C. F., Seibert, M., Small, G. J. J. Phys. Chem. 1990, submitted.Google Scholar
  7. 7.
    Tang, D., Jankowiak, R., Small, G. J., Seibert, M. Photosynthesis Research, submitted.Google Scholar
  8. 8.
    Nanba, O., Satoh, K. Proc. Natl. Acad. Sci. USA 1987, 84, 109–112.PubMedCrossRefGoogle Scholar
  9. 9.
    Kobayashi, M., Maeda, H., Watanabe, T., Nakane, H., Satoh, K. FEBS Lett. 1990, 260, 138–140.CrossRefGoogle Scholar
  10. 10.
    Dekker, J. P., Bowlby, N. R., Yocum, C. F. FEBS Lett. 1989, 254, 150–154.CrossRefGoogle Scholar
  11. 11.
    McTavish, H., Picorel, R., Seibert M. Plant Physiol. 1989, 89, 452–456;.CrossRefGoogle Scholar
  12. 12.
    Seibert, M., Picorel, R., Rubin, A. B., Connolly, J. S. Plant Physiol. 1988, 87, 303.CrossRefGoogle Scholar
  13. 13.
    Wasielewski, M. R., Johnson, D. G., Seibert, M., Govindjee. Proc. Natl. Acad. Sci. USA 1989, 86, 524–528.CrossRefGoogle Scholar
  14. 14.
    Breton, J., Martin, J. L., Fleming, G. R., Lambrys, J. C. Biochemistry 1988, 27, 8276–8284.CrossRefGoogle Scholar
  15. 15.
    Fleming, G. R., Martin, J. L., Breton, J. Nature 1988, 333, 190–192.CrossRefGoogle Scholar
  16. 16.
    Kohler, W, Friedrich, J., Fisher, R., Scheer, H. J. Chem. Phys. 1988, 89, 871–874.CrossRefGoogle Scholar
  17. 17.
    Breton, J. in Perspectives in Photosynthesis, Jortner, J. and Pullman, B., Eds., Kluwer Academic Press: Dordrecht/Boston/London, 1989, pp. 23–38.Google Scholar
  18. 18.
    Shu, L., Small, G. J. Chem. Phys. 1990, 141, 447–455.CrossRefGoogle Scholar
  19. 19.
    Rutherford, A. W., Satoh, K., Mathis, P. Biophys. J. 1983, 41, 40a.Google Scholar
  20. 20.
    Lee, In-Ja, Small, G. J., Hayes, J. M. J. Phys. Chem., accepted.Google Scholar
  21. 21.
    Volker, S. Annu. Rev. Phys. Chem. 1989, 40, 499–530.CrossRefGoogle Scholar
  22. 22.
    Tetenkin, V. L., Gulyaev, B. A., Seibert, M., Rubin, A. B. FEBS Lett. 1989, 250, 459–463.CrossRefGoogle Scholar
  23. 23.
    Friedrich, J., Swalen, J. D., Haarer, D. J. Chem. Phys. 1980, 73 (2), 705–711.CrossRefGoogle Scholar
  24. 24.
    Friedrich, J., Haarer, D. J. Chem. Phys. 1982, 76, 61–68.CrossRefGoogle Scholar
  25. 25.
    Gillie, J. K, Hayes, J. M., Small, G. J., Golbeck, J. H. J. Phys. Chem. 1987, 91, 5524–5529.CrossRefGoogle Scholar
  26. 26.
    Gillie, J. K., Small, G. J., Golbeck, J. H. J. Phys. Chem. 1989, 93, 1620–1627.CrossRefGoogle Scholar
  27. 27.
    Avarma, R. A., Rebane, K. K. Spectrochim. Acta 1985, 41A, 1365–1380.Google Scholar
  28. 28.
    Scherz, A., Braun, P., Greenberg, B. M. Biochemistry 1990, in print.Google Scholar
  29. 29.
    Friesner, R. A., Won, Y. Biochim. Biophys. Acta 1989, 977, 99–122.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • G. J. Small
    • 1
  • R. Jankowiak
    • 1
  • M. Seibert
    • 2
  • C. F. Yocum
    • 3
  • D. Tang
    • 1
  1. 1.Department of Chemistry and Ames Laboratory-USDOEIowa State UniversityAmesUSA
  2. 2.Photoconversion Research BranchSolar Energy Research InstituteGoldenUSA
  3. 3.Department of Biology and ChemistryUniversity of MichiganAnn ArborUSA

Personalised recommendations