Skip to main content

Abstract

This article reviews and illustrates our understanding of the interplay between group theory and the theory of atomic and molecular electronic structure. It begins by demonstrating how the quest for group theory already emerged from the classical chemistry and crystallography of the nineteenth century, and goes on to describe the geometrical and dynamical symmetries met in the quantum mechanical one-electron problem. Next, detailed attention is paid to atoms and molecules with two or more electrons and hence to the permutation symmetry induced by the indistinguis-hability of electrons. Many-electron wave functions must span the antisymmetric representation of the permutation group, and the problem of constructing such functions is considered from various angles. Thus, contact is made to modern methods of determining many-electron wave functions by large scale computations. The article addresses itself to the student of chemistry who has but little knowledge of group theory, and hence it also includes a brief discussion of the theory of group representations.

Further address: Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, U.S.A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weyl H (1952) Symmetry. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  2. Hargittai I (ed) (1986) Symmetry. Unifying human understanding. Pergamon, New York

    Google Scholar 

  3. Moore FJ (1918) A history of chemistry. McGraw-Hill, New York

    Google Scholar 

  4. Benfey OT (ed) (1963) Classics in the theory of chemical combination. Dover, New York

    Google Scholar 

  5. Kauffman GB (1968) Classics in coordination chemistry. Dover, New York

    Google Scholar 

  6. Phillips FC (1946) An introduction to crystallography. Longmans, London

    Google Scholar 

  7. Hahn T (ed) (1983) International tables for crystallography. Volume A. Space-group symmetry. Published for the International Union of Crystallography. Reidel, Dortrecht

    Google Scholar 

  8. Landau LD, Lifshitz EM (1958) Quantum mechanics. Pergamon, London

    Google Scholar 

  9. Atkins PW, Child MS, Phillips CSG (1970) Tables for group theory. Oxford University Press, Oxford

    Google Scholar 

  10. Lomont JS (1959) Applications of finite groups. Academic, New York

    Google Scholar 

  11. Wigner EP (1959) Group theory and its application to the quantum mechanics of atomic spectra. Academic, New York

    Google Scholar 

  12. Tinkham M (1964) Group theory and quantum mechanics. McGraw-Hill, New York

    Google Scholar 

  13. Hamermesh M (1962) Group theory and its application to physical problems. Addison-Wesley, Reading, MA

    Google Scholar 

  14. Dahl JP (1972) The independent-particle model. Polyteknisk Forlag, Lyngby, Denmark

    Google Scholar 

  15. Schrödinger E (1926) Ann. d. Physik 79: 361,

    Article  Google Scholar 

  16. Schrödinger E (1926) Ann. d. Physik 79: 489;

    Article  Google Scholar 

  17. Schrödinger E (1926) Ann. d. Physik 80: 437;

    Article  Google Scholar 

  18. Schrödinger E (1926) Ann. d. Physik 81: 409

    Google Scholar 

  19. Schiff LI (1968) Quantum mechanics, 3rd ed, McGraw-Hill, New York

    Google Scholar 

  20. Eyring H, Walter J, Kimball GE (1944) Quantum chemistry. Wiley, New York

    Google Scholar 

  21. Atkins PW (1983) Molecular quantum mechanics, 2nd ed, Oxford University Press, Oxford

    Google Scholar 

  22. Berry RS, Rice SA, Ross J (1980) Physical chemistry. Wiley, New York

    Google Scholar 

  23. Cornwell JF (1984) Group theory in physics. Academic, London

    Google Scholar 

  24. Runge C (1919) Vektoranalysis. S. Hirzel, Leipzig

    Google Scholar 

  25. Lenz W (1924) Z. Physik 24: 197

    Article  CAS  Google Scholar 

  26. Pauli W (1926) Z. Physik 36: 336

    Article  CAS  Google Scholar 

  27. Fock V (1935) Z. Physik 98: 145

    Article  Google Scholar 

  28. Bargmann V (1936) Z. Physik 99: 576

    Article  CAS  Google Scholar 

  29. Bander M, Itzykson C (1966) Rev. Mod. Phys. 38: 330

    Article  CAS  Google Scholar 

  30. Dahl JP (1968) Physics Letters 27A: 62

    Google Scholar 

  31. Uhlenbeck GE, Goudsmit S (1925) Naturwiss. 13: 953

    Article  CAS  Google Scholar 

  32. Pauli W (1927) Z. Phys. 43: 601

    Article  CAS  Google Scholar 

  33. Rauch H, Zeilinger A, Badurek G, Wilfing A, Bauspiess W, Bonse U (1975) Phys. Lett. 54A: 425

    CAS  Google Scholar 

  34. Werner SA, Colella R, Overhauser AW, Eagen CF (1975) Phys. Rev. Lett. 35: 1053

    Article  CAS  Google Scholar 

  35. Dahl JP (1977) Kgl. Danske Vid. Selsk. Mat. Fys. Medd. 39 no. 12

    Google Scholar 

    Google Scholar 

  36. Dirac PAM (1928) Proc. Roy. Soc. A117: 610

    Google Scholar 

  37. Slater JC (1960) Quantum theory of atomic structure, Vol. 1. McGraw-Hill, New York

    Google Scholar 

  38. Born M, Oppenheimer R (1927) Ann. d. Phys. 84: 457

    Article  CAS  Google Scholar 

  39. Born M (1951) Gött. Nachr. math. phys. Kl. no. 6

    Google Scholar 

  40. Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, Oxford

    Google Scholar 

  41. Ballhausen CJ, Hansen AE (1972) Ann. Rev. Phys. Chem. 23: 15

    Article  CAS  Google Scholar 

  42. Berry RS (1980) in: Woolley RG (ed) Quantum dynamics of molecules. Plenum, New York. p l43

    Google Scholar 

  43. Ezra GS (1982) Symmetry properties of molecules. Springer, Berlin Heidelberg New York (Lecture Notes in Chemistry, vol 28)

    Book  Google Scholar 

  44. Berry RS (1987) in: Avery J, Dahl JP, Hansen AE (eds) Understanding molecular properties. Reidel, Dortrecht, p 425

    Chapter  Google Scholar 

  45. Sutcliffe BT, Tennyson J (1987) in: Avery J, Dahl JP, Hansen AE (eds) Understanding molecular properties. Reidel, Dortrecht, p 449

    Chapter  Google Scholar 

  46. Dahl JP, Feng X (1984) Theor. Chim. Acta 66: 261

    Article  CAS  Google Scholar 

  47. McWeeny R, Sutcliffe BT (1969) Methods of molecular quantum mechanics. Academic, London

    Google Scholar 

  48. Cotton FA (1963) Chemical applications of group theory. Wiley-Interscience, New York

    Google Scholar 

  49. Bethe H (1929) Ann. Physik 5:133

    Article  Google Scholar 

  50. Dambus T (1980) Linear Algebra Appl. 32: 125

    Article  Google Scholar 

  51. Altmann SL (1986) Rotations, quarternions, and double groups. Clarendon, Oxford

    Google Scholar 

  52. Mulliken RS (1933) Phys. Rev. 43: 279

    Article  CAS  Google Scholar 

  53. Ballhausen CJ (1962) Introduction to ligand field theory. McGraw-Hill, New York

    Google Scholar 

  54. Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry. Verlag Chemie, Weinheim

    Google Scholar 

  55. Bohr N (1922) Z. Physik 9: 1

    Article  CAS  Google Scholar 

  56. Heisenberg W (1926) Z. Physik 38: 411;

    Article  Google Scholar 

  57. Heisenberg W (1926) Z. Physik 39: 499

    Article  CAS  Google Scholar 

  58. Heisenberg W (1927) Z. Physik 41: 239

    Article  CAS  Google Scholar 

  59. Wigner E (1926) Z. Physik 40: 492,

    Article  CAS  Google Scholar 

  60. Wigner E (1926) Z. Physik 40: 883

    Article  Google Scholar 

  61. Pauli W (1925) Z. Physik 31: 765

    Article  CAS  Google Scholar 

  62. Dirac PAM (1926) Proc. Roy. Soc. (London) A112: 661

    Google Scholar 

  63. Slater JC (1975) Solid-state and molecular theory: A scientific biography. Wiley, New York

    Google Scholar 

  64. Slater JC (1929) Phys. Rev. 34: 1293

    Article  CAS  Google Scholar 

  65. Boys SF (1950) Proc. Roy. Soc. A200: 542

    Google Scholar 

  66. Löwdin P-O (1960) Rev. Mod. Phys. 32: 328

    Article  Google Scholar 

  67. Löwdin P-O (1969) Adv. Chem. Phys. 14: 283

    Article  Google Scholar 

  68. Slater JC (1963) Quantum theory of molecules and solids. McGraw-Hill, New York

    Google Scholar 

  69. Pauncz R (1979) Spin eigenfunctions. Construction and use. Plenum, New York

    Book  Google Scholar 

  70. Kotani M, Amemiya A, Ishiguro E, Kimura T (1963) Tables of molecular integrals. Maruzen, Tokyo

    Google Scholar 

  71. Duch W, Karwowski J (1985) Computer Physics Report 2: 93

    Article  CAS  Google Scholar 

  72. Weyl H (1938) The classical groups. Princeton University Press, Princeton, NJ

    Google Scholar 

  73. Coxeter HSM (1977) Mathematical Intelligencer 0: 22

    Article  Google Scholar 

  74. Hinze J (ed) (1981) The unitary group. Springer, Berlin Heidelberg New York (Lecture Notes in Chemistry, vol 22)

    Google Scholar 

  75. Matsen FA, Pauncz R (1986) The unitary group in quantum chemistry. Elsevier, Amsterdam (Studies in physical and theoretical chemistry, vol 44)

    Google Scholar 

  76. Sutcliffe BT (1983) in: Diercksen GHF, Wilson S (eds) Computational molecular physics. Reidel, Dortrecht (NATO ASI Series C, vol 113)

    Google Scholar 

  77. Chen JQ, Wang F, Gao MJ, Yu ZR (1980) Scientia Sinica 9: 1116

    Google Scholar 

  78. Rettrup S, Sarma CR, Dahl JP (1982) Int. J. Quantum Chem. 22: 127

    Article  CAS  Google Scholar 

  79. Gao MJ, Chen JQ, Paldus J (1987) Int. J. Quantum Chem. 32: 133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dahl, J.P. (1990). Symmetry in Molecules. In: Maksić, Z.B. (eds) Atomic Hypothesis and the Concept of Molecular Structure. Theoretical Models of Chemical Bonding Part 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61279-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61279-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64775-8

  • Online ISBN: 978-3-642-61279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics