Studies of Liquid Turbulence Using Double-Pulsed Particle Correlation

  • R. J. Adrian
  • P. W. Offutt
  • Z.-C. Liu
  • T. J. Hanratty
  • C. C. Landreth
Conference paper

Summary

Particle Image Velocimetry has developed to the point where it is possible to apply the technique to a wide range of flow phenomena that are significant to engineering and science. A review of current research shows that most of these applications remain in the research laboratory, but the potential exists for expansion into less ideal environments in the near future. This paper describes two studies of liquid turbulence that have been done by PIV at the University of Illinois and summarizes results from these applications. We shall consider low Reynolds number turbulent channel flow and turbulent thermal convection.

Keywords

Combustion Vortex Convection Vorticity Styrofoam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adrian, R. J.: Multi-point optical measurements of simultaneous vectors in unsteady flow-a review. Int. J. Heat and Fluid Flow. 7 (1986) 127–145.CrossRefGoogle Scholar
  2. 2.
    Keane, R. D.; Adrian, R. J.: Optimization of particle image velocimeters. Part 1: Double pulsed systems. Meas. Sci. and Tech. 1 (1990) 1202–1215.ADSCrossRefGoogle Scholar
  3. 3.
    Landreth, C. C.; Adrian, R. J.: Measurement and refinement of velocity data using high image density analysis in particle image velocimetry. Proc. Fourth Int’l. Symp. on Applic. Laser Anemometry to Fluid Mech. Lisbon (1988).Google Scholar
  4. 4.
    Liu, Z. C.; Landreth, C. C.; Adrian, R. J.; Hanratty, T. J.: Measurement of velocity fields in turbulent channel flow. To appear in Exp. in Fluids (1991).Google Scholar
  5. 5.
    Adrian, R. J.; Moin, P.; Moser, R. D.: Stochastic estimation of conditional eddies. NASA Ames/Stanford Center for Turbulence Research, Report CT8–S87 (1987).Google Scholar
  6. 6.
    Niederschulte, M. A.; Adrian, R. J.; Hanratty, T. J.: Turbulent flow in a channel at low Reynolds numbers. Exp. in Fluids 9 (1990) 222–230.ADSCrossRefGoogle Scholar
  7. 7.
    Kim, J.; Moin, P.; Moser, R. D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 30 (1987) 133–166.ADSCrossRefGoogle Scholar
  8. 8.
    Adrian, R. J.; Ferreira, R. T. D. S.; Boberg, T.: Turbulent thermal convection in wide horizontal fluid layers. Exp. in Fluids. 4 (1980) 121–141.ADSGoogle Scholar
  9. 9.
    Arroyo, M. P. et al: Velocity measurements in convective flows by particle image velocimetry using a low power laser. Optical Eng. 27 (1988) 641–649.ADSGoogle Scholar
  10. 10.
    Howard, L. N.; Krishnamurti, R.: Large-scale flow in turbulent convection: a mathematical model. J. Fluid Mech. 170 (1986) 385–410.ADSMATHCrossRefGoogle Scholar
  11. 11.
    Adrian, R. J.: Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry. Applied Optics, 25 (1986) 3855–3858.ADSCrossRefGoogle Scholar
  12. 12.
    Landreth, C. C.; Adrian, R. J.; Yao, C. S.: Double pulsed particle image velo- cimeter with directional resolution for complex flows. Exp. Fluids 6 (1988) 119–128.Google Scholar
  13. 13.
    Schmidt, H.; Schumann, U.: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 200 (1989) 511–562.ADSMATHCrossRefGoogle Scholar
  14. 14.
    Howard, L. N.; Krishnamurti, R.: Large-scale flow in turbulent convection: a mathematical model. J. Fluid Mech. 170 (1986) 385–410.ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • R. J. Adrian
    • 1
  • P. W. Offutt
  • Z.-C. Liu
    • 1
  • T. J. Hanratty
    • 1
  • C. C. Landreth
    • 1
  1. 1.University of Illinois at Urbana-Champaign UrbanaIllinoisUSA

Personalised recommendations