Skip to main content

Solar Fuels and Chemicals, Solar Hydrogen

  • Chapter
  • 817 Accesses

Abstract

The term solar power plant commonly refers to electricity production by photothermal or photovoltaic conversion. Within this book, these main conversion techniques are called the solar thermoelectric path and the solar photoelectric path. In addition, a third possibility exists, which, following the above used nomenclature, is called the solar fuels path [46]. This path represents the conversion of solar energy into chemical energy, and is important due to its potential to overcome the problems of long term storage and transport of solar energy, as well as for the intrinsic value of the chemicals themselves. With respect to the present discussion, endergonic reactions (with a positive change of the Gibbs free energy of reaction AG) are especially suited so that useful energy (exergy) of the solar radiation can be stored in the reaction products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Gas-Cooled Solar Tower Power Plant GAST: Analysis of Its Potential (in German). Study prepared for the BMFT, Bonn (D), BMFT, 1985

    Google Scholar 

  2. Hydrogen as Secondary Energy Carrier (in German). Technical Report DLR-Mitteilungen 81-10, Köln (D), DLR, 1981

    Google Scholar 

  3. A Preliminary Assessment of the Potential for Integrating Solar Thermal Central Receiver Technology with Fuels and Chemical Processes. Contractor Report SAND85-8183, Sandia National Laboratories, Albuquerque/NM, 1986

    Google Scholar 

  4. Becker, M.; Harth, R.; Mueller, W. D.: Steam Reforming as a Key Process for Utilization and Transport of Solar Thermal Energy. In Proc. 21st Intersoc. Energy Conv. Engg. Conf. (IECEC), San Diego/CA, Washington/DC: American Chemical Society, 1986

    Google Scholar 

  5. Besenbruch, G.: Thermochemical Water Splitting at G A Technologies. In Proc. IEA-SSPS Experts Meeting on High Temperature Technology and Application, Atlanta/GA, IEA-SSPS TR 1/85, pp. 407–449, Köln (D): DLR, 1985

    Google Scholar 

  6. Besenbruch, G.; McGorkle, K. H.: Thermochemical Water Splitting with Solar Thermal Energy. Report GAA 16022, San Diego/CA, General Atomic, 1981

    Google Scholar 

  7. Birke, G.; Reimert, R.: Integrating High-Temperature Solar Energy with Fuel Upgrading Processes. In Proc. 3rd Int. Workshop on Solar Thermal Central Receiver Systems, Konstanz, Becker, M. (Ed.), pp. 693–702, Berlin, Heidelberg, New York: Springer, 1986

    Google Scholar 

  8. Birke, G.; Reimert, R.: Process Synthesis of a Gasification Process Modified for High Solar Energy Integration. In Solar Thermal Energy Utilization, Becker, M. (Ed.), pp. 547–620, Berlin, Heidelberg, New York: Springer, 1987

    Google Scholar 

  9. Bockris, J. O.; Veziroglu, T. N.: A Solar-Hydrogen Economy for the USA. Hydrogen Energy, 7 (1982) 287–310

    Article  Google Scholar 

  10. Buck, R.: Volumetric Receivers: Potential and Problems. In Proc. ISES Solar World Congress, Kobe 1989, Oxford (UK): Pergamon Press, 1990

    Google Scholar 

  11. Carpetis, C.: An Assessment of Electrolytic Hydrogen Production by Means of Photovoltaic Energy Conversion. Hydrogen Energy, (1984) 969-991

    Google Scholar 

  12. Carpetis, C.: A Study of Water Electrolysis with Photovoltaic Solar Energy Conversion. Hydrogen Energy, 7 (1982) 287–310

    Article  Google Scholar 

  13. Carpetis, C.; Schnurnberger, W.; Seeger, W.; Steeb, H.: Electrolytic Hydrogen by Means of Photovoltaic Energy Conversion. In Hydrogen Energy Progress IV, Proc. 4th WHEC, Pasadena/CA, Veziroglu, T.N.; Van Vorst, W.B.; Kelley, J.H. (Ed.), pp. 1495–1512, Oxford (UK): Pergamon Press, 1982

    Google Scholar 

  14. Carrol, D.: Solar Plant 1. Sunworld, 9 (1985) 10–11

    Google Scholar 

  15. Costogne, N.; Yasni, R. K.: Performance Data of a Terrestrial Solar Photovoltaic Experiment. In Proc. ISES Solar World Conference, (Ed.), pp. 138-139, 1975

    Google Scholar 

  16. Cox, K. E.: Hydrogen from Solar Energy via Water Electrolysis. In Proc. 11th Intersoc. Energy Conv. Engg. Conf (IECEC), pp. 926-932, 1976

    Google Scholar 

  17. Diver, R. B.: Receiver/Reactor Concepts for Thermochemical Transport of Solar Energy. In Proc. 21st Intersoc. Energy Conv. Engg. Conf. (IECEC), San Diego/CA, Washington/DC: American Chemical Society, 1986

    Google Scholar 

  18. Diver, R. B.; Pederson, S.; Kappauf, T.; Fletcher, E. A.: Hydrogen and Oxygen from Water - VI Quenching the Effluent from a Solar Furnace. Energy, 8 (1983)

    Google Scholar 

  19. Doenitz, W.; Dietrich, G.; Erdle, E.; Streicher, R.: Electrochemical High Temperature Technology for Hydrogen Production or Direct Electricity Generation. Hydrogen Energy, 13 (1988) 283–287

    Article  Google Scholar 

  20. Doenitz, W.; Schmidberger, R.: Concepts and Design for Scaling-Up High Temperature Water Vapour Electrolysis. Hydrogen Energy, 7 (1982) 321–330

    Article  Google Scholar 

  21. Eickermann, R.: Thermal Cracking Processes (in German). Chemie-Ing. Technik, 55 (1983)

    Google Scholar 

  22. Erdle, E.; Gross, J.; Meyringer, V.: Possibilities for Hydrogen Production by Combination of a Solar Thermal Central Receiver System and High-Temperature Electrolysis of Steam. In Proc. 3rd Intl. Workshop on Solar Thermal Central Receiver Systems, Konstanz, Becker, M. (Ed.), pp. 727–736, Berlin, Heidelberg, New York: Springer, 1986

    Google Scholar 

  23. Erhardt, K.; Henne, R.; Köhne, R.; Tamme, R.: Interaction of Highly Concentrated Solar Radiation with Chemical Compounds (in German). DLR IB 441 484/84, Köln (D), DLR, 1984

    Google Scholar 

  24. Erhardt, K.; Vix, U.: Direct Absorption of Concentrated Solar Radiation. In Proc. 3rd Intl. Workshop on Solar Thermal Central Receiver Systems, Konstanz, Becker, M. (Ed.), pp. 835–867, Berlin, Heidelberg, New York: Springer, 1986

    Google Scholar 

  25. Esteve, D.; Ganibal, C.; Steinmetz, D.; Vialaron, A.: Performance of a Photovolatic Electrolysis System. In Hydrogen Energy Progress III, Proc. 3rd WHEC, Tokyo/Japan, Veziroglu, T.N.; Fueki, K.; Ohta, T. (Ed.), pp. 1593–1603, Oxford (UK): Pergamon Press, 1980

    Google Scholar 

  26. Fish, J. D.; Hawn, D. C.: Closed Loop Thermochemical Energy Transport Based on CO2 Reforming of Methane: Balancing the Reaction Systems. In Proc. 21st Intersoc. Energy Conv. Engg. Conf. (IECEC), San Diego/CA, Washington/DC: American Chemical Society, 1986

    Google Scholar 

  27. Flamant, G.; Hernandez, D.; Bonet, C.: Experimental Aspects of the Thermodynamical Conversion of Solar Energy; Decarbonation of CaCO3. Solar Energy, 24 (1980) 385–395

    Article  Google Scholar 

  28. Foster, R. W.; Tison, R. R.; Escher, W. J. D.; Hanson, J. A.: Solar Hydrogen System Assessment. Technical Report DOE/JPL-955492, US Department of Energy, 1980

    Google Scholar 

  29. Froment, G.: Fixed Bed Catalytic Reactors, Technological and Fundamental Design Aspects. Chemie-Ing. Technik, 46 (1974) 374–380

    Article  Google Scholar 

  30. Funk, J. E.; Bowman, M. G.: Renewable Hydrogen Energy from Solar Thermal Central Receiver Systems. In Proc. 3rd Int. Symp. Hydrogen from Renewable Energy, Hawaii, University of Hawaii, 1986

    Google Scholar 

  31. Graham, J. L.; Dellinger, B.: Solar Detoxification of Hazardous Organic Wastes. In Solar Thermal Technology- Proc. 4th Intl. Symposium, Santa Fe/NM, 1988, Gupta, B.P.; Traugott, W.H. (Ed.), p. 391, New York: Hemisphere Publ. Co., 1990

    Google Scholar 

  32. Graham, J. L.; Dellinger, B.: Solar Thermal/Photolytic Destruction of Hazardous Organic Waste. Energy, 12 (1987)

    Google Scholar 

  33. Hunt, A. J.: New Approaches to Receiver Design: Prospects and Technology of Using Particle Suspensions as Direct Thermal Absorbers. In Proc. 3rd Intl. Workshop on Solar Thermal Central Receiver Systems, Konstanz, Becker, M. (Ed.), pp. 835–842, Berlin, Heidelberg, New York: Springer, 1986

    Google Scholar 

  34. Hunt, A. J.; Brown, C. T.: Solar Testing of Small Particle Heat Exchange Receiver (SPHER). Technical Report LBL-15756, Lawrence Berkeley Laboratories, 1983

    Google Scholar 

  35. Hunt, A. J.; et al. : Solar Radiant Heating of Gas-Particle Mixtures. Final Report F Y 1985-86 LBL-22743, Lawrence Berkeley Laboratories, 1986

    Google Scholar 

  36. Hunt, A. J.; Hodara, I.; Miller, F. J.; Noring, J. E.: Direct Absorption Receivers for Catalyzing Chemical Reactions. In Solar Thermal Technology - Proc. 4th Intl. Symposium, Santa Fe/NM, 1988, Gupta, B.P.; Traugott, W. H. (Ed.), p. 437, New York: Hemisphere Publ. Co., 1990

    Google Scholar 

  37. Kappauf, T.; Murray, J. P.; Palumbo, R.; Diver, R. B.; Fletcher, E. A.: Hydrogen and Sulfur from Hydrogen Sulfide - IV Quenching the Effluent from a Solar Furnace. Energy, 10 (1985)

    Google Scholar 

  38. Kirk-Othmer: Encyclopedia of Chemical Technology. Volume 12, New York: John Wiley & Sons, 3rd edition, 1982

    Google Scholar 

  39. Knoche, K. F.: Thermochemical Cycle Processes for Water Dissociation (in German). Volume 729 of VDI-Berichte, Düsseldorf (D): VDI-Verlag, 1989

    Google Scholar 

  40. Levy, M.; Levitan, R.; Rosin, H.; Adusei, G.; Rubin, R.: Storage and Transport of Solar Energy by Thermochemical Pipe. In Solar Thermal Technology - Proc. 4th Intl. Symposium, Santa Fe/NM, 1988, Gupta, B. P.; Traugott, W. H. (Ed.), p. 527, New York: Hemisphere Publ. Co., 1990

    Google Scholar 

  41. Lukens, L. L.; Andraka, C. E.; Moreno, J. B.; Abbin, J. P.: Liquid Metal Thermoelectric Converter. In Proc. 22nd Intersoc. Energy Conv. Engg. Conf. (IECEC), New York: American Institute of Aeronautics and Astronautics, 1987

    Google Scholar 

  42. McCrary, J. H.; McCrary, G. E.; Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.: An Experimental Study of the CO 2 -CH 4 Reforming-Methanization Cycle as a Mechanism for Converting and Transporting Solar Energy. Volume 29, 1982

    Google Scholar 

  43. Mehrmann, A.; Kleinkauf, W.; Pigorsch, W.; Steeb, H.: Dynamic of Small Photovoltaic Systems. In Proc. 5th E.C. PV Solar Energy Conference, Athens 1983, Palz, W.; Fittipaldi, F. (Ed.), p. 495, Dordrecht (NL): D. Riedl, 1984

    Google Scholar 

  44. Mosfegh, A. Z.; Igantiev, A.: Photo-Enhancement of the Catalytic Methanation Reaction. Energy, 12 (1987)

    Google Scholar 

  45. Mueller, W. D.; Fuhrmann, H.: Comparative Investigations and Ratings of Different Solar Systems Using Tubular Steam Reformers. In Solar Thermal Energy Utiliztion, Becker, M. (Ed.), Berlin, Heidelberg, New York: Springer, 1987

    Google Scholar 

  46. Nix, G.; Sizmann, R.: High Temperature, High Flux Density Solar Chemistry. In Solar Thermal Technology- Proc. 4th Intl. Symposium, Santa Fe/NM, 1988, Gupta, B.P.; Traugott, W.H. (Ed.), p. 351, New York: Hemisphere Publ. Co., 1990

    Google Scholar 

  47. Nix, R. G.; Bergeron, P. W.: Thermochemical Energy Transport for a Large Heat Utility. In Proc. 21st Intersoc. Energy Conv. Engg. Conf (IECEC), San Diego/CA, Washington/DC: American Chemical Society, 1986

    Google Scholar 

  48. Ohta, T.: Solar Hydrogen Energy Systems. Oxford (UK): Pergamon Press, 1979

    Google Scholar 

  49. Perry, R. H.; Green, D.: Chemical Engineers’ Handbook. New York: McGraw Hill, 6th edition, 1984

    Google Scholar 

  50. Pritzkow, W.: The Volumetric Ceramic Receiver Potential of Ceramics for Solar Heat Exchangers. Brit. Cer. Proc., 43 (1989)

    Google Scholar 

  51. Rozenmann, T.: Energy Transport via a Direct Solar Reformer Reactor. In Proc. 21st Intersoc. Energy Conv. Engg. Conf. (IECEC), San Diego/CA, Washington/DC: American Chemical Society, 1986

    Google Scholar 

  52. Sanders Associates, Inc.: Parabolic Dish Module Experiment. Final Test Report SAND85-7007, Sandia National Laboratories, Albuquerque/NM, 1985

    Google Scholar 

  53. Sayigh, A. A. M.: The Use of Solar Energy - Photovoltaic in Hydrogen Production and Arid Zones like Saudi Arabia. In Hydrogen Energy Progress III, Proc. 3rd WHEC, Tokyo/Japan, Veziroglu, T.N.; Fueki, K.; Ohta, T. (Ed.), pp. 1431–1439, Oxford (UK): Pergamon Press, 1980

    Google Scholar 

  54. Schuetze, B.; Hofmann, H.: How to Upgrade Heavy Feeds. Hydrocarbon Processing, 63 (1984)

    Google Scholar 

  55. Steeb, H.; Kleinkauf, W.; Mehrmann, A.: Utilization of Solar Energy for Hydrogen Production. In Proc. 4th Intl. Solar Forum, Berlin, Auer, F. (Ed.), pp. 970–980, München (D): DGS-Sonnenenergieverlag, 1982

    Google Scholar 

  56. Steeb, H.; Mehrmann, A.; Seeger, W.; Schnurnberger, W.: Solar Hydrogen Production: Photovoltaic System with Active Power Conditioning. In Hydrogen Energy Progress V, Proc. 5th WHEC, Toronto/Canada, Veziroglu, T.N.; Taylor, J.B. (Ed.), pp. 109–119, Oxford (UK): Pergamon Press, 1984

    Google Scholar 

  57. Steeb, H.; Weiss, H. R.; Koshaim, B. H.: HYSOLAR, a Joint German Saudi Arabian Research, Development and Demonstration Program on Solar Hydrogen Production and Utilization. In Hydrogen Energy Progress VI, Proc. 6th WHEC, Vienna/Austria, Veziroglu, T.N.; Getoff N.; Weinzierl, P. (Ed.), Oxford (UK): Pergamon Press, 1985

    Google Scholar 

  58. S zyska, A.: Realization of the Solar-Hydrogen Project at Neunburg vorm Wald (Germany). München (D): Solar-Wasserstoff Bayern GmbH

    Google Scholar 

  59. Tamme, R.; Huder, K.: Production of Fuels and Chemicals by Solar Chemical Processing: Analysis of Methane Reforming Processes. In Solar Thermal Technology - Proc. 4th Intl. Symposium, Santa Fe/NM, 1988, Gupta, B.P.; Traugott, W. H. (Ed.), p. 425, New York: Hemisphere Publ. Co., 1990

    Google Scholar 

  60. Ullmann: Encyclopedia of Technical Chemistry (in German). Volume 3 and 14, Verlag Chemie Weinheim, 4th edition, 1977

    Google Scholar 

  61. Wentworth, W. E.; Batten, C. F.; Gong, W.: The Photo-Assisted Thermal Decomposition of Methanol and Isopropanol in a Fluidized Bed. Energy, 12 (1987)

    Google Scholar 

  62. Wentworth, W. E.; Batten, C. F.; Hamada, M.: Photoassisted Hydrocarbon Reforming and Cracking Reactions. In Solar Thermal Technology - Proc. 4th Intl. Symposium, Santa Fe/NM, 1988, Gupta, B.P.; Traugott, W. H. (Ed.), p. 415, New York: Hemisphere Publ. Co., 1990

    Google Scholar 

  63. Ziph, B.; Godett, T. M.; Diver, R. B.: Reflux Heat-Pipe Solar Receiver for a Stirling Dish-Electric System. In Proc. 22nd Intersoc. Energy Conv. Engg. Conf. (IECEC), New York: American Institute of Aeronautics and Astronautics, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, M., Tamme, R. (1991). Solar Fuels and Chemicals, Solar Hydrogen. In: Winter, CJ., Sizmann, R.L., Vant-Hull, L.L. (eds) Solar Power Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61245-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61245-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64759-8

  • Online ISBN: 978-3-642-61245-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics