Skip to main content

Interaction of Aminoglycoside Antibiotics with RNA

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 10))

Abstract

The recent discovery that certain antibiotics can specifically interfere with catalytic or functional RNAs, besides the well-known example of ribosomal RNA, led to a new aspect in studying RNA structure and function. Simple amino sugars were added to the list of components influencing catalytic RNAs. Although several experiments pointed to a direct interaction of antibiotics with the ribosomal RNA, the presence of ribosomal proteins excluded a safe and conclusive confirmation of this assumption. The discovery that the catalytic reaction of group I intron RNA is sensitive to aminoglycosides provided clear evidence for a direct interaction with RNA and led to the initial suggestion of a possible evolutionary relationship between these two molecules, rRNA, and group I intron RNA. It also initiated a search for other RNA targets of antibiotics. Antibiotics are commonly known as low molecular weight products encompassing a wide range of different chemical classes from the secondary metabolism of microorganisms, able to inhibit growth of other microorganisms. Most of the effects on RNA function that were found are caused by aminoglycoside antibiotics — more specifically, by the disubstituted 2-deoxystreptamines (Fig. 1) — and we will therefore focus here on those compounds. Additionally, streptomycin, an aminocyclitol which is structurally related to aminoglycosides and which causes similar effects on translation, will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen PN, Noller HF (1991) A single base substitution in 16S ribosomal RNA suppresses streptomycin dependence and increases the frequency of translational errors. Cell 66: 141–148

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP, Zapp ML, Gree MR, Szostak, JW (1991) HIV-1 rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 67: 529–536

    Article  PubMed  CAS  Google Scholar 

  • Bass BL, Cech TR (1984) Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA. Nature 308: 820–826

    Article  PubMed  CAS  Google Scholar 

  • Bass BL, Cech TR (1986) Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor. Biochemistry 25: 4473–4477

    Article  PubMed  CAS  Google Scholar 

  • Battiste JL, Tan R, Frankel AD, Williamson JR (1994) Binding of an HIV Rev peptide to Rev responsive element RNA induces formation of purine-purine base pairs. Biochemistry 33: 2741–2747

    CAS  Google Scholar 

  • Beauclerk AAD, Cundliffe E (1987) Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J Mol Biol 193: 661–671

    Article  PubMed  CAS  Google Scholar 

  • Been MD, Perrotta (1991) Group I intron self-splicing with adenosine: evidence for a single nucleoside-binding site. Science 252: 434

    Article  PubMed  CAS  Google Scholar 

  • Birge EA, Kurland CG (1969) Altered ribosomal protein in streptomycin-dependent Escherichia coli. Science 166: 1282–1284

    Article  PubMed  CAS  Google Scholar 

  • Bohman K, Ruusala T, Jelenc PC, Kurland CG (1984) Kinetic impairment of restrictive streptomycin-resistant ribosomes. Mol Gen Genet 198: 90–99

    Article  PubMed  CAS  Google Scholar 

  • Botto RE, Coxon B (1983) Nitrogen-15 nuclear magnetic resonance spectroscopy of neomycin B and related minoglycosides. J Am Chem Soc 105: 1021–1028

    Article  CAS  Google Scholar 

  • Clouet d’Orval B, Stage TK, Uhlenbeck OC (1995) Neomycin inhibition of the hammerhead ribozyme involves ionic interactions. Biochemistry 34: 11186–11190

    Article  Google Scholar 

  • Cundliffe E (1981) Antibiotic inhibitors of ribosome function. In: Gales E, Cundliffe E, Reynolds P, Richmond M, Waring M (eds) The molecular basis of antibiotic action. Wiley, New York, pp 402–457

    Google Scholar 

  • Cundliffe E (1990) Recognition sites for antibiotics within rRNA. In: Hill WE, Dahlberg A, Garrett R, Moore P, Schlessinger D, Warner J (eds) The ribosome. ASM, Washington, pp 479–490

    Google Scholar 

  • Dahlberg AE, Horodyski F, Keller P (1978) Interaction of neomycin with ribosomes and ribosomal ribonucleic acid. Antimicrob Agents Chemother 13: 331–339

    PubMed  CAS  Google Scholar 

  • De Stasio EA, Moazed D, Noller HF, Dahlberg AE (1989) Mutations in 16S ribosomal RNA disrupt antibiotic-RNA interactions. EMBO J 8: 1213–1216

    PubMed  Google Scholar 

  • Fedor MJ, Uhlenbeck OC (1992) Kinetics of intermolecular cleavage by hammerhead ribozymes. Biochemistry 31: 12042–12054

    Article  PubMed  CAS  Google Scholar 

  • Fromm H, Galun E, Edelman M (1989) A novel site for streptomycin resistance in the 530 loop of chloroplast 16S ribosomal RNA. Plant Mol Biol 12: 499–505

    Article  CAS  Google Scholar 

  • Gornicki P, Nurse K, Hellmann W, Boublik M, Ofengand J (1984) High resolution localization of the tRNA anticodon interaction site on the Escherichia coli 30S ribosomal subunit. J Biol Chem 259: 10493–10498

    PubMed  CAS  Google Scholar 

  • Green MR (1993) Molecular mechanism of Tat and Rev. AIDS Rev Res 3: 41–55

    CAS  Google Scholar 

  • Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58: 10–26

    PubMed  CAS  Google Scholar 

  • Herschlag D (1992) Evidence for processivity and two-step binding of the RNA sub-strate from studies of J1/2 mutants of the Tetrahymena ribozyme. Biochemistry 31: 1386–1399

    Article  PubMed  CAS  Google Scholar 

  • Herschlag D, Khosla M, Tsuchihashi Z, Karpel RL (1994) An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J 13: 2913–2924

    PubMed  CAS  Google Scholar 

  • Hertel KJ, Herschlag D, Uhlenbeck OC (1994) A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33: 3374–3385

    Article  PubMed  CAS  Google Scholar 

  • Hoch I (1995) Electrostatic interactions of antibiotics with the td group I intron RNA. Diploma Thesis, Univ Vienna

    Google Scholar 

  • Kam J, Dingwell C, Gait, MJ, Heaphy S, Skinner MA (1991) In: Eckstein F, Lilley DMJ (eds) Nucleic Acids and Moleculer Biology, vol 5. Springer, Berlin Heidelberg New York, pp 194–218

    Google Scholar 

  • Lato SM, Boles AR, Ellington AD (1995) In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution. Chem Biol 2: 291–303

    Article  PubMed  CAS  Google Scholar 

  • Leclerc F, Cedergreen R, Ellington AD (1994) A three-dimensional model of the Revbinding element of HIV-1 derived from analyses of aptamers. Struct Biol 1: 293–300

    Article  CAS  Google Scholar 

  • Leon SA, Brock TD (1967) Effect of streptomycin and neomycin on physical properties of the ribosome. J Mol Biol 24: 391–404

    Article  CAS  Google Scholar 

  • Li M, Tzagoloff A, Underbrink-Lyon K, Martin N (1982) Identification of the paromomycin-resistance mutation in the 15S rRNA gene of yeast mitochondria. J Biol Chem 257: 5921–5928

    PubMed  CAS  Google Scholar 

  • Lin H, Niu MT, Yoganathan T, Buck GA (1992) Characterization of the rRNAencoding genes and transcripts, and a group-I self-splicing intron in Pneumocystis carinii. Gene 119: 163–173

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Tidwell RR, Leibowitz MJ (1994) Inhibition of in vitro splicing of a group I intron of Pneumocystis carinii. J Euk Microbiol 41: 31–38

    Article  PubMed  CAS  Google Scholar 

  • McCarthy B, Holland JJ (1965) Denatured DNA as a direct template for in vitro protein synthesis. Proc Natl Acad Sci USA 54: 880–886

    Article  PubMed  CAS  Google Scholar 

  • Melancon P, Lemieux C, Brakier, Gingras L (1988) A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucl Acids Res 16: 9631–9639

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Westhof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216: 585–610

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Hanna M, Green R, Bartel DP, Szostak JW (1989) The guanosine binding site of the Tetrahymena ribozyme. Nature 342: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Moazed D, Noller HF (1986) Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47: 985–994

    Article  PubMed  CAS  Google Scholar 

  • Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327: 389–394

    Article  PubMed  CAS  Google Scholar 

  • Moazed D, Noller HF (1990) Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16S rRNA. J Mol Biol 211: 135–145

    Article  PubMed  CAS  Google Scholar 

  • Montandon PE, Wagner R, Stutz E (1986) E. coli ribosomes with a C912 to U base change in the 16S rRNA are streptomycin resistant. EMBO J 5:3705–3708

    PubMed  CAS  Google Scholar 

  • Noller HF (1991) Ribosomal RNA and translation. Annu Rev Biochem 60: 191–227

    Article  PubMed  CAS  Google Scholar 

  • Ozaki H, Mizushima S, Nomura M (1969) Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 222: 333–339

    Article  PubMed  CAS  Google Scholar 

  • Powers T, Noller HF (1994) Selective Perturbation of G530 of 16S rRNA by translational miscoding agents and a streptomycin-dependence mutation in protein S12. J Mol Biol 235: 156–172

    Article  PubMed  CAS  Google Scholar 

  • Puglisi JD, Tan R, Calnan BJ, Frankl AD, Williamson JR (1992) Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science 257: 76–80

    Article  PubMed  CAS  Google Scholar 

  • Purohit P, Stern S (1994) Interactions of a small RNA with antibiotics and RNA ligands of the 30S subunit. Nature 370: 597–598

    Article  Google Scholar 

  • Pyle AM, Murphy FL, Cech TR (1992) RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 358: 123–128

    Article  PubMed  CAS  Google Scholar 

  • Ruusala T, Andersson D, Ehrenberg M, Kurland C (1984) Hyperaccurate ribosomes inhibit growth. EMBO J 3: 2575–2580

    PubMed  CAS  Google Scholar 

  • Saenger W (1984) Principles of nucleic acid structure. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Samaha RS, O’Brien B, O’Brien TW, Noller HF (1994) Independent in vitro assembly of a ribonucleoprotein particle containing the 3’ domain of 16S rRNA. Proc Natl Acad Sci USA 91: 7884–7888

    Article  PubMed  CAS  Google Scholar 

  • Spangler EA, Blackburn EH (1985) The nucleotide sequence of the 17S ribosomal RNA gene of Tetrahymena thermophila and the identification of point mutations resulting in resistance to the antibiotics paromomycin and hygromycin. J Biol Chem 260: 6334–6340

    PubMed  CAS  Google Scholar 

  • Stage TK, Hertel KJ, Uhlenbeck OC (1995) Inhibition of the hammerhead ribozyme by neomycin. RNA 1: 95–101

    PubMed  CAS  Google Scholar 

  • Strobel SA, Cech TR (1993) Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry 32: 13593–13604

    Article  PubMed  CAS  Google Scholar 

  • Tan R, Frankel A (1995) Structural variety of arginine-rich RNA-binding peptides. Proc Natl Acad Sci USA 92: 5282–5286

    Article  PubMed  CAS  Google Scholar 

  • Tan R, Chen L, Buettner JA, Hudson D, Frankel AD (1993) RNA recognition by an isolated alpha helix. Cell 73: 1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N (1982) Mechanism of action of aminoglycoside antibiotics. In: Umezawa H, Hooper I (eds) Aminoglycoside antibiotics. Springer, Berlin Heidelberg New York, pp 221–292

    Google Scholar 

  • Von Ahsen U, Noller HF (1993a) Footprinting the sites of interaction of antibiotics with catalytic group I intron RNA. Science 260: 1500–1503

    Article  Google Scholar 

  • Von Ahsen U, Noller HF (1993b) Methylation interference experiments identify bases that are essential for distinct catalytic functions of a group I ribozyme. EMBO J 12: 4747–4754

    Google Scholar 

  • Von Ahsen U, Schroeder R (1990) Streptomycin and self-splicing. Nature 346: 801

    Article  Google Scholar 

  • Von Ahsen U, Schroeder R (1991) Streptomycin inhibits splicing of group I introns by competition with the guanosine substrate. Nucl Acids Res 19: 2261–2265

    Article  Google Scholar 

  • Von Ahsen U, Davies J, Schroeder R (1991) Antibiotic inhibition of group I ribozyme function. Nature 353: 368–370

    Article  Google Scholar 

  • Von Ahsen U, Davies J, Schroeder R (1992) Non-competitive inhibition of group I intron RNA self-splicing by aminoglycoside antibiotics. J Mol Biol 226: 935–941

    Article  Google Scholar 

  • Wallis MG, von Ahsen U, Schroeder R, Famulok M (1995) A novel RNA motif for neomycin recognition. Chem Biol 2: 543–552

    Article  PubMed  CAS  Google Scholar 

  • Wagenknecht T, Frank J, Boublik M, Nurse K, Ofengand J (1988) Direct localization of the tRNA-anticodon interaction site on the Escherichia coli 30S ribosomal subunit by electron microscopy and computerized image averaging. J Mol Biol 203: 753–760

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Rando R (1995) Specific binding of aminoglycoside antibiotics to RNA. Chem Biol 2: 281–290

    Article  PubMed  CAS  Google Scholar 

  • Woodcock J, Moazed D, Cannon M, Davies J, Noller HF (1991) Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. EMBO J 10: 3099–3103

    PubMed  CAS  Google Scholar 

  • Wyatt J, Tinoco I (1993) RNA structural elements and RNA function. In: Gesteland R, Atkins J (eds) The RNA world. Cold Spring Harbour Lab Press, New York, pp 465–496

    Google Scholar 

  • Yarus M (1988) A specific amino acid binding site composed of RNA. Science 240: 1751–1758

    Article  PubMed  CAS  Google Scholar 

  • Young B, Herschlag D, Cech TR (1991) Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity. Cell 67: 1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Zapp ML, Stern S, Green MR (1993) Small molecules that selectively block RNA binding of HIV-1 rev protein inhibit rev function and viral production. Cell 74: 969–978

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schroeder, R., von Ahsen, U. (1996). Interaction of Aminoglycoside Antibiotics with RNA. In: Eckstein, F., Lilley, D.M.J. (eds) Catalytic RNA. Nucleic Acids and Molecular Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61202-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61202-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62679-4

  • Online ISBN: 978-3-642-61202-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics