Skip to main content

In Vitro Selection of Catalytic RNA

  • Chapter
Catalytic RNA

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 10))

Abstract

After the first examples of catalytic RNAs raised to prominence earlier proposals that RNA was a likely protagonist in the dawn of evolution, molecular biologists began to ask in earnest about the range of possible RNA activities. This question provided much of the impetus for the development of in vitro RNA selection (Ellington and Szostak 1990; Green et al. 1990; Robertson and Joyce 1990; Tuerk and Gold 1990). With the ability to isolate rare functional individuals from vast pools of sequence variants, investigators have generated molecules that dramatically extend the known range of RNA catalytic and binding activities. The ability to venture further into sequence space has also facilitated study of the sequence and structural requirements of present-day biological RNAs. The technique has recently been extended to the isolation of catalytic DNAs, and may someday generate products useful in clinical, industrial, or research settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartel DP, Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences. Science 261: 1411–1418

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP, Szostak JW (1994) Study of RNA-protein recognition by in vitro selection. In: Nagai K, Mattaj IW (eds) RNA-protein interactions. IRL Press, Oxford, pp 248–268

    Google Scholar 

  • Beaudry AA, Joyce GF (1992) Directed evolution of an RNA enzyme. Science 257: 635–641

    Article  PubMed  CAS  Google Scholar 

  • Benner SA, Ellington AD, Tauer A (1989) Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci USA 86: 7045–7058

    Article  Google Scholar 

  • Berzal-Herranz A, Joseph S, Burke JM (1992) In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage and ligation reactions. Genes Dev 6: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Berzal-Herranz A, Joseph S, Chowrira BM, Butcher SE, Burke JM (1993) Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J 12: 2567–2573

    PubMed  CAS  Google Scholar 

  • Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355: 564–566

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Bufardeci E, Fabbri S, Baldi MI, Mattoccia E, Tocchini-Valentini GP (1993) In vitro genetic analysis of the structural features of the pre-tRNA required for determination of the 3’ splice site in the intron excision reaction. EMBO J 12: 4697–4704

    PubMed  CAS  Google Scholar 

  • Burgstaller P, Famulok M (1994) Isolation of RNA aptamers for biological cofactors by in vitro selection. Angew Chem Int Ed Engl 33: 1084–1087

    Article  Google Scholar 

  • Chapman KB, Szostak JW (1994) In vitro selection of catalytic RNAs. Cuff Opin Struct Biol 4: 618–622

    Article  CAS  Google Scholar 

  • Chapman KB, Szostak JW (1995) Isolation of a ribozyme with 5’-5’ ligase activity. Chem Biol 2: 325–333

    Article  PubMed  CAS  Google Scholar 

  • Cuenoud B, Szostak JW (1995) A DNA metalloenzyme with DNA ligase activity. Nature 375: 611–614

    Article  PubMed  CAS  Google Scholar 

  • Dai X, De Mesmaeker A, Joyce GF (1995) Cleavage of an amide bond by a ribozyme. Science 267: 237–240

    Article  PubMed  CAS  Google Scholar 

  • Dahm SC, Uhlenbeck OC (1991) Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30: 9464–9469

    Article  PubMed  CAS  Google Scholar 

  • Dahm SC, Derrick WB, Uhlenbeck OC (1993) Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry 32: 13040–13045

    Article  PubMed  CAS  Google Scholar 

  • Dichtl B, Pan T, Di Renzo AB, Uhlenbeck OC (1993) Replacement of RNA hairpins by in vitro selected tetranucleotides. Nucl Acids Res 21: 531–535

    Article  PubMed  CAS  Google Scholar 

  • Doudna JA, Szostak JW (1989a) Miniribozymes, small derivatives of the sun Y intron, are catalytically active. Mol Cell Biol 9: 5480–5483

    PubMed  CAS  Google Scholar 

  • Doudna JA, Szostak JW (1989b) RNA-catalysed synthesis of complementary-strand RNA. Nature 339: 519–522

    Article  PubMed  CAS  Google Scholar 

  • Ekland E, Bartel DP (1995) The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucl Acids Res 23: 3231–3238

    Article  PubMed  CAS  Google Scholar 

  • Ekland E, Szostak JW, Bartel DP (1995) Structurally complex and highly active RNA ligases derived from random RNA sequences. Science 269: 364–370

    Article  PubMed  CAS  Google Scholar 

  • Ellington AD (1994) Aptamers achieve the desired recognition. Curr Biol 4: 427–429

    Article  PubMed  CAS  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selecton of RNA molecules that bind specific ligands. Nature 346: 818–822

    Article  PubMed  CAS  Google Scholar 

  • Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355: 850–852

    Article  PubMed  CAS  Google Scholar 

  • Gesteland RF, Atkins JF (1993) The RNA world. Cold Spring Harbor Lab Press, New York

    Google Scholar 

  • Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64: 763–797

    Article  PubMed  CAS  Google Scholar 

  • Green R, Szostak JW (1992) Selection of a ribozyme that functions as a superior template in a self-copying reaction. Science 258: 1910–1915

    Article  PubMed  CAS  Google Scholar 

  • Green R, Szostak JW (1994) In vitro genetic analysis of the hinge region between helical elements P5–P4-P6 and P7–P3-P8 in the sun Y group I self-splicing intron. J Mol Biol 235: 140–155

    Article  PubMed  CAS  Google Scholar 

  • Green R, Ellington AD, Szostak JW (1990) In vitro genetic analysis of the Tetrahymena self-splicing intron. Nature 347: 406–408

    Article  PubMed  CAS  Google Scholar 

  • Herschlag D, Cech TR (1990) DNA cleavage catalysed by the ribozyme from Tetrahymena. Nature 344: 405–409

    Article  PubMed  CAS  Google Scholar 

  • Huizenga DE, Szostak JW (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34: 656–665

    Article  PubMed  CAS  Google Scholar 

  • Illangasekare M, Sanchez G, Nickles T, Yarus M (1995) Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267: 643–647

    Article  PubMed  CAS  Google Scholar 

  • Janda KD (1994) Tagged versus untagged libraries: methods for the generation and screening of combinatorial chemical libraries. Proc Natl Acad Sci USA 91: 10779–10785

    Article  PubMed  CAS  Google Scholar 

  • Joseph S, Berzal-Herranz A, Chowrira BM, Butcher SE, Burke JM (1993) Substrate selection rules for the hairpin ribozyme determined by in vitro selection, mutation, and analysis of mismatched substrates. Genes Dev 7: 130–138

    Article  PubMed  CAS  Google Scholar 

  • Koizumi M, Ohtsuka E (1991) Effects of phosphorothioate and 2-amino groups in hammerhead ribozymes on cleavage rates and Mgt+ binding. Biochemistry 30: 5145–5150

    Article  PubMed  CAS  Google Scholar 

  • Lauhon CT, Szostak JW (1995) RNA aptamers that bind flavin and nicotinamide redox cofactors. J Am Chem Soc 117: 1246–1257

    Article  PubMed  CAS  Google Scholar 

  • Lehman N, Joyce GF (1993a) Evolution in vitro of an RNA enzyme with altered metal dependence. Nature 361: 182–185

    Article  PubMed  CAS  Google Scholar 

  • Lehman N, Joyce GF (1993b) Evolution in vitro: analysis of a lineage of ribozymes. Curr Biol 3: 723–734

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Altman S (1994) Differential evolution of substrates for an RNA enzyme in the presence and absence of its protein cofactor. Cell 77: 1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Long DM, Uhlenbeck OC (1994) Kinetic characterization of intramolecular and intermolecular hammerhead RNAs with stem II deletions. Proc Natl Acad Sci USA 91: 6977–6981

    Article  PubMed  CAS  Google Scholar 

  • Lorsch JR, Szostak JW (1994a) In vitro evolution of new ribozymes with polynucleotide kinase activity. Nature 371: 31–36

    Article  PubMed  CAS  Google Scholar 

  • Lorsch JR, Szostak JW (1994b) In vitro selection of RNA aptamers specific for cyanocobalamin. Biochemiostry 33: 973–982

    Article  CAS  Google Scholar 

  • Mills DR, Peterson RL, Spiegelman S (1967) An extracellular darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci USA 58: 217–224

    Article  PubMed  CAS  Google Scholar 

  • Nakamaye KL, Eckstein F (1994) AUA-cleaving hammerhead ribozymes: attempted selection for improved cleavage. Biochemistry 33: 1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE, Sulston JE (1971) Polynucleotide replication and the origin of life. In: Kimball AP, Oro J (eds) Prebiotic and biochemical evolution. North-Holland Publ, Amsterdam, p 89

    Google Scholar 

  • Pan T, Uhlenbeck OC (1992a) In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry 31: 3887–3895

    Article  PubMed  CAS  Google Scholar 

  • Pan T, Uhlenbeck OC (1992b) A small metalloribozyme with a two-step mechanism. Nature 358: 560–563

    Article  PubMed  CAS  Google Scholar 

  • Pan T, Dichtl B, Uhlenbeck OC (1994) Properties of an in vitro selected Pb2+ cleavage motif. Biochemistry 33: 9561–9565

    Article  PubMed  CAS  Google Scholar 

  • Piccirilli JA, Vyle JS, Caruthers MH, Cech TR (1993) Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361: 85–88

    Article  PubMed  CAS  Google Scholar 

  • Prudent JR, Tetsuo U, Schultz PG (1994) Expanding the scope of RNA catalysis. Science 264: 1924–1927

    Article  PubMed  CAS  Google Scholar 

  • Pyle AM (1993) Ribozymes: a distinct class of metalloenzymes. Science 261: 709–714

    Article  PubMed  CAS  Google Scholar 

  • Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344: 467–468

    Article  PubMed  CAS  Google Scholar 

  • Sassanfar M, Szostak JW (1993) An RNA motif that binds ATP. Nature 364: 550–553

    Article  PubMed  CAS  Google Scholar 

  • Slim G, Gait MJ (1991) Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucl Acids Res 19: 1183–1188

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90: 6498–6502

    Article  PubMed  CAS  Google Scholar 

  • Tsang J, Joyce GF (1994) Evolutionary optimization of the catalytic properties of a DNA-cleaving ribozyme. Biochemistry 33: 5966–5973

    Article  PubMed  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymeease., Science 249: 505–510

    Article  PubMed  CAS  Google Scholar 

  • White HB III (1982) Evolution of coenzymes. In: Everse J, Anderson B, Yu K-S (eds) The pyridine nucleotide coenzymes. Academic Press, New York, pp 1–17

    Google Scholar 

  • Williams KP, Imahori H, Fujimoto DN, Inoue T (1994) Selection of novel forms of a functional domain within the Tetrahymena ribozyme. Nucl Acids Res 22: 2003–2009

    Article  PubMed  CAS  Google Scholar 

  • Williams KP, Ciafré S, Tocchini-Valentini GP (1995) Selection of novel Mgt -depen-dent self-cleaving ribozymes. EMBO J 14: 4551–4557

    PubMed  CAS  Google Scholar 

  • Wilson C, Szostak JW (1995) In vitro evolution of a self-alkylating ribozyme. Nature 374: 777–782

    Article  PubMed  CAS  Google Scholar 

  • Yarus M (1993) How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J 7: 31–39

    PubMed  CAS  Google Scholar 

  • Yuan Y, Altman S (1994) Selection of guide sequences that direct efficient cleavage of mRNA by human ribonuclease P. Science 263: 1269–1273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Williams, K.P., Bartel, D.P. (1996). In Vitro Selection of Catalytic RNA. In: Eckstein, F., Lilley, D.M.J. (eds) Catalytic RNA. Nucleic Acids and Molecular Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61202-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61202-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62679-4

  • Online ISBN: 978-3-642-61202-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics