Colloid Charge Capacity — Its Measurement, Problems and Promise

  • Roger M. Jorden
Conference paper


The interfacial charge capacity of colloids (or CCC — colloid charge capacity) in water is potentially a “master” variable for dealing with numerous colloidal phenomena, especially dosage control in charge-neutralization coagulation. Colloid charge titration (CCT) analysis can quantify this important extensive charge property — distinct from zeta potential (ζ), the intensive expression of interfacial charge. The analysis involves titration of a colloid suspension with an oppositely charged, strongly binding polyion of known charge equivalence, past the charge-neutralization reaction equivalence point (i.e., zero point of charge or ζ = 0 mV) employing an appropriate endpoint detection method. The objectives of this article are to [1] explore the original dye based endpoint method by instrumental means and identify its capabilities and limitation, [2] review relevant literature to reconcile these findings with the “underwhelming” use of this otherwise promising technique, and [3] explore its potential in coagulation chemistry control.


Clay Surfactant Sludge Zeolite Titration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Terayama, H.: Method of Colloid Titration. Journal Polymer Science 8 (1952) 243CrossRefGoogle Scholar
  2. [2]
    Kawamura, S., Tanaka,Y.: Applying Colloid Titration Techniques to Coagulant Dosage Control. Water and Sewage Works 9 (1966) 348Google Scholar
  3. [3]
    Bernhardt, H., Schell, H.: Control of Flocculants by Use of a Streaming Current Detector (SCD) Aqua 42 (1993) 239Google Scholar
  4. [4]
    Tsuchida, E., Osada, Y., Ohno, H.: Formation of Interpolymer Complexes. Journal Macromolecule Science-Physics. B17 (1980) 683CrossRefGoogle Scholar
  5. [5]
    Horn, D.: Optisches Zweistrahlverfahren zur Bestimmung von Polyelektrolyten in Wasser und zur Messung der Polymeradsorption an Grenzflächen. Progress in Colloid & Polymer Science 65 (1978) 251CrossRefGoogle Scholar
  6. [6]
    Vitagliano, V.: The Aggregation of Dyes on Polyelectrolytes. In: Aggregation Processes in Solution, E. Wyn-Jones and J. Gormally (Eds.). Elsevier, New York 1983, pp. 271–308Google Scholar
  7. [7]
    Wassmer, K.G., Schroeder, U., Horn, D.: Characterization and Detection of Polyanions by Direct Polyelectrolyte Titration. Makromolekulare Chemie 192 (1991) 553CrossRefGoogle Scholar
  8. [8]
    Terayama, H.: Application of the Method of Colloid Titration to the Study of Bacteria. Archives of Biochemistry and Biophysics 50 (1952) 55CrossRefGoogle Scholar
  9. [9]
    Terayama, H.: Surface Electric Charge of Ascites Hepatomas and the Dissociation of Islands of Tumor Cells. Experimental Cell Research 28 (1962) 113CrossRefGoogle Scholar
  10. [10]
    Ueno, K., Kina, K.: Colloid Titration — A Rapid Method for the Determination of Charged Colloid. Journal of Chemical Education 62 (1985) 627CrossRefGoogle Scholar
  11. [11]
    Kawamura, S., Hanna, G.P.J., Shumate, K.S.: Application of Colloid Titration Technique to Flocculation Control. Journal of American Water Works Association 59 (1967) 1003Google Scholar
  12. [12]
    Collins, A.A., Farvardin, M.R.: Colloid Charge Measurement of Humic Material. Proceedings, Water Quality Technology Conference AWWA 15 (1988) 645Google Scholar
  13. [13]
    Ringbom, A., Skrifvars, B., Still, E.: Photometric Titrations with Dichromatic Light. Analytical Chemistry 39 (1967) 1217Google Scholar
  14. [14]
    Haggerty, G.M., Bowman, R.S.: Sorption of Chromate and Other Inorganic Anions by Organo-Zeolite. Environmental Science and Technology 28 (1994) 452CrossRefGoogle Scholar
  15. [15]
    Yariv, S., Ghosh, D.K., Hepler, L.G.: Metachromasy in Clay-Mineral Systems. Journal of Chemical Society Faraday Transactions 87 (1991) 1201Google Scholar
  16. [16]
    Bernhardt, H., Schell, H.: Experience in Coagulant Control by Use of a Charge Titration Unit. Aqua 45 (1996) 19Google Scholar
  17. [17]
    Stumm, W., O’Melia, C.R.: Stoichiometry of Coagulation. Journal of American Water Works Association 60 (1968) 514Google Scholar
  18. [18]
    Kokufuta, E., Shimizu, H., Nakamura, I.: Stoichiometric Complexation of Human Serum Albumin with Strongly Acidic and Basic Polyelectrolytes. Macromolecules 15 (1982) 1618Google Scholar
  19. [19]
    Tanaka, H., Sakamoto, Y.: Polyelectrolyte Titration Using Fluorescent Indicator. Journal of Polymer Science, Part A: Polymer Chemistry 37 (1993) 2687Google Scholar
  20. [20]
    Horn, D.: Polyethylenimine — Physiochemical Properties and Applications. In: Polymeric Amines and Ammonium Salts, Vol.IUPAC, E.J. Goethals (Ed.). Pergamon Press, New York 1980, pp. 333–355Google Scholar
  21. [21]
    Horn, D., Heuck, C: Charge Determination of Proteins with Polyelectrolyte Titration. Journal of Biological Chemistry 258 (1983) 1665Google Scholar
  22. [22]
    Kim, W., Ludwig, H.F., Bishop, W.D.: Cation-Exchange Capacity and pH in the Coagulation Process. Journal of American Water Works Association 57 (1965) 327Google Scholar
  23. [23]
    Fischer, J.P., Nolken, E.: Correlation Between Latex Stability Data Determined by Practical and Colloid Chemistry-Based Methods. Progress in Colloid & Polymer Science 77 (1988) 180CrossRefGoogle Scholar
  24. [24]
    Dentel, S.K., Wehnes, K.M., Abu-Orf, M.M.: Use of Streaming Current and Other Parameters for Polymer Dose Control in Sludge Conditioning. In: Chemical Water and Wastewater Treatment III, R. Klute and H.H. Hahn (Eds.). Springer, Berlin Heidelberg New York 1994, pp. 1–22Google Scholar
  25. [25]
    Ghosh, M.M. et al: Polyelectrolyte Selection for Water Treatment. Journal of American Water Works Association 77 (3) (1985) 67Google Scholar
  26. [26]
    Schell, H., Bernhardt, H.: Bestimmung der Ladungskonzentration als Steuergröße des Flockungsmittelzusatzes Teil I & II. Z. Wasser-Abwasser-Forsch. 19 (1986) 51Google Scholar
  27. [27]
    Dentei, S.: Use of the Streaming Current Detector in Coagulation Monitoring and Control. Berichte Rheinisch-Westfälisches Institut für Wasserchemie 10 (1994) 1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Roger M. Jorden
    • 1
  1. 1.Clear Corp, Inc.BoulderUSA

Personalised recommendations