Colloid Charge Capacity — Its Measurement, Problems and Promise

  • Roger M. Jorden
Conference paper


The interfacial charge capacity of colloids (or CCC — colloid charge capacity) in water is potentially a “master” variable for dealing with numerous colloidal phenomena, especially dosage control in charge-neutralization coagulation. Colloid charge titration (CCT) analysis can quantify this important extensive charge property — distinct from zeta potential (ζ), the intensive expression of interfacial charge. The analysis involves titration of a colloid suspension with an oppositely charged, strongly binding polyion of known charge equivalence, past the charge-neutralization reaction equivalence point (i.e., zero point of charge or ζ = 0 mV) employing an appropriate endpoint detection method. The objectives of this article are to [1] explore the original dye based endpoint method by instrumental means and identify its capabilities and limitation, [2] review relevant literature to reconcile these findings with the “underwhelming” use of this otherwise promising technique, and [3] explore its potential in coagulation chemistry control.


American Water Work Association Back Titration Sludge Dewatering Intensive Expression Colloid Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Terayama, H.: Method of Colloid Titration. Journal Polymer Science 8 (1952) 243CrossRefGoogle Scholar
  2. [2]
    Kawamura, S., Tanaka,Y.: Applying Colloid Titration Techniques to Coagulant Dosage Control. Water and Sewage Works 9 (1966) 348Google Scholar
  3. [3]
    Bernhardt, H., Schell, H.: Control of Flocculants by Use of a Streaming Current Detector (SCD) Aqua 42 (1993) 239Google Scholar
  4. [4]
    Tsuchida, E., Osada, Y., Ohno, H.: Formation of Interpolymer Complexes. Journal Macromolecule Science-Physics. B17 (1980) 683CrossRefGoogle Scholar
  5. [5]
    Horn, D.: Optisches Zweistrahlverfahren zur Bestimmung von Polyelektrolyten in Wasser und zur Messung der Polymeradsorption an Grenzflächen. Progress in Colloid & Polymer Science 65 (1978) 251CrossRefGoogle Scholar
  6. [6]
    Vitagliano, V.: The Aggregation of Dyes on Polyelectrolytes. In: Aggregation Processes in Solution, E. Wyn-Jones and J. Gormally (Eds.). Elsevier, New York 1983, pp. 271–308Google Scholar
  7. [7]
    Wassmer, K.G., Schroeder, U., Horn, D.: Characterization and Detection of Polyanions by Direct Polyelectrolyte Titration. Makromolekulare Chemie 192 (1991) 553CrossRefGoogle Scholar
  8. [8]
    Terayama, H.: Application of the Method of Colloid Titration to the Study of Bacteria. Archives of Biochemistry and Biophysics 50 (1952) 55CrossRefGoogle Scholar
  9. [9]
    Terayama, H.: Surface Electric Charge of Ascites Hepatomas and the Dissociation of Islands of Tumor Cells. Experimental Cell Research 28 (1962) 113CrossRefGoogle Scholar
  10. [10]
    Ueno, K., Kina, K.: Colloid Titration — A Rapid Method for the Determination of Charged Colloid. Journal of Chemical Education 62 (1985) 627CrossRefGoogle Scholar
  11. [11]
    Kawamura, S., Hanna, G.P.J., Shumate, K.S.: Application of Colloid Titration Technique to Flocculation Control. Journal of American Water Works Association 59 (1967) 1003Google Scholar
  12. [12]
    Collins, A.A., Farvardin, M.R.: Colloid Charge Measurement of Humic Material. Proceedings, Water Quality Technology Conference AWWA 15 (1988) 645Google Scholar
  13. [13]
    Ringbom, A., Skrifvars, B., Still, E.: Photometric Titrations with Dichromatic Light. Analytical Chemistry 39 (1967) 1217Google Scholar
  14. [14]
    Haggerty, G.M., Bowman, R.S.: Sorption of Chromate and Other Inorganic Anions by Organo-Zeolite. Environmental Science and Technology 28 (1994) 452CrossRefGoogle Scholar
  15. [15]
    Yariv, S., Ghosh, D.K., Hepler, L.G.: Metachromasy in Clay-Mineral Systems. Journal of Chemical Society Faraday Transactions 87 (1991) 1201Google Scholar
  16. [16]
    Bernhardt, H., Schell, H.: Experience in Coagulant Control by Use of a Charge Titration Unit. Aqua 45 (1996) 19Google Scholar
  17. [17]
    Stumm, W., O’Melia, C.R.: Stoichiometry of Coagulation. Journal of American Water Works Association 60 (1968) 514Google Scholar
  18. [18]
    Kokufuta, E., Shimizu, H., Nakamura, I.: Stoichiometric Complexation of Human Serum Albumin with Strongly Acidic and Basic Polyelectrolytes. Macromolecules 15 (1982) 1618Google Scholar
  19. [19]
    Tanaka, H., Sakamoto, Y.: Polyelectrolyte Titration Using Fluorescent Indicator. Journal of Polymer Science, Part A: Polymer Chemistry 37 (1993) 2687Google Scholar
  20. [20]
    Horn, D.: Polyethylenimine — Physiochemical Properties and Applications. In: Polymeric Amines and Ammonium Salts, Vol.IUPAC, E.J. Goethals (Ed.). Pergamon Press, New York 1980, pp. 333–355Google Scholar
  21. [21]
    Horn, D., Heuck, C: Charge Determination of Proteins with Polyelectrolyte Titration. Journal of Biological Chemistry 258 (1983) 1665Google Scholar
  22. [22]
    Kim, W., Ludwig, H.F., Bishop, W.D.: Cation-Exchange Capacity and pH in the Coagulation Process. Journal of American Water Works Association 57 (1965) 327Google Scholar
  23. [23]
    Fischer, J.P., Nolken, E.: Correlation Between Latex Stability Data Determined by Practical and Colloid Chemistry-Based Methods. Progress in Colloid & Polymer Science 77 (1988) 180CrossRefGoogle Scholar
  24. [24]
    Dentel, S.K., Wehnes, K.M., Abu-Orf, M.M.: Use of Streaming Current and Other Parameters for Polymer Dose Control in Sludge Conditioning. In: Chemical Water and Wastewater Treatment III, R. Klute and H.H. Hahn (Eds.). Springer, Berlin Heidelberg New York 1994, pp. 1–22Google Scholar
  25. [25]
    Ghosh, M.M. et al: Polyelectrolyte Selection for Water Treatment. Journal of American Water Works Association 77 (3) (1985) 67Google Scholar
  26. [26]
    Schell, H., Bernhardt, H.: Bestimmung der Ladungskonzentration als Steuergröße des Flockungsmittelzusatzes Teil I & II. Z. Wasser-Abwasser-Forsch. 19 (1986) 51Google Scholar
  27. [27]
    Dentei, S.: Use of the Streaming Current Detector in Coagulation Monitoring and Control. Berichte Rheinisch-Westfälisches Institut für Wasserchemie 10 (1994) 1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Roger M. Jorden
    • 1
  1. 1.Clear Corp, Inc.BoulderUSA

Personalised recommendations