Advertisement

Second Order Self-Energy and Interpolation Formula for the Charge Transfer Probability in Time-Dependent Models

  • K. Makoshi
  • T. Mii
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 121)

Abstract

A simple approximation for charge transfer probability in time-dependent Hamiltonians is proposed with the use of the Mahanthappa-Baksi-Keldysh Green function. The Auger process and the resonant tunneling process are both considered. We show that the approximation interpolates between the limit of fast ion motion and that of slow ion motion. Also shown is that the range of validity is quite wide in Auger processes. The similar procedure is applied for the resonant tunneling process, leading to the interpolation formula for the two limits. By using model time-dependences, we also discuss the validity of our approximation.

Keywords

Green Function Resonant Tunneling Charge Fraction Auger Process Ground State Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    H.D. Hagstrum: in Chemistry and Physics of Solid Surfaces VII eds. R. Vanselow & R. Howe (Springer-Verlag, Berlin, 1988) p. 341.Google Scholar
  2. 2).
    H. Kaji, K. Makoshi and A. Yoshimori, Surf. Sci. 227 (1990) 138.ADSCrossRefGoogle Scholar
  3. 3).
    K. Makoshi and H. Kaji, Prog. Theor. Phys. Suppl. no. 106 (1991) 327.CrossRefGoogle Scholar
  4. 4).
    K.T. Mahanthappa, Phys. Rev. 126 (1961) 329.ADSCrossRefGoogle Scholar
  5. 5).
    P.M. Baksi and K.T. Mahanthappa, J. Math. Phys. 4 (1963) 1.ADSCrossRefGoogle Scholar
  6. 6).
    P.M. Baksi and K.T. Mahanthappa, J. Math. Phys. 4 (1963) 12.ADSCrossRefGoogle Scholar
  7. 7).
    L.V. Keldysh, Sov. Phys. JETP 20 (1965) 1018.MathSciNetGoogle Scholar
  8. 8).
    A. Blandin, A. Nourtier and D.W. Hone, J. Phys. (Paris) 37 (1976) 369.Google Scholar
  9. 9).
    K. Makoshi, Surf. Sci. 254 (1991) 281.ADSCrossRefGoogle Scholar
  10. 10).
    T. Mii and K. Makoshi, to be published in Surf. Sci.Google Scholar
  11. 11).
    P.W. Anderson, Phys. Rev. 124 (1961) 41.MathSciNetADSCrossRefGoogle Scholar
  12. 12).
    D.M. Newns, Phys. Rev. 178 (1969) 1123.ADSCrossRefGoogle Scholar
  13. 13).
    M. Tsukada and N. Shima, in Dynamical Processes and Ordering on Solid Surfaces, eds. A. Yoshimori and M. Tsukada (Springer-Ver lag, Berlin. 1985) p. 34.Google Scholar
  14. 14).
    R. Brako and D.M. Newns, Rep. Prog. Phys. 52 (1989) 655.ADSCrossRefGoogle Scholar
  15. 15).
    J.C. Tully, Phys. Rev. B 16 (1977) 4324ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • K. Makoshi
    • 1
  • T. Mii
    • 2
  1. 1.Faculty of ScienceHimeji Institute of TechnologyHyogoJapan
  2. 2.Department of Material Physics, Faculty of Engineering ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations