Skip to main content

Differentiation of Malignant Cells as a Therapeutic Approach

  • Conference paper
Tumor Biology

Part of the book series: NATO ASI Series ((ASIH,volume 99))

  • 144 Accesses

Abstract

The hematological malignancies may be considered to be diseases of altered maturation in which the rate of proliferation is increased relative to that of terminal differentiation. Many neoplastic cells, however, retain the capacity to mature to end-stage cells with a finite life-span. Differentiation to a nonmalignant state can be produced in many different malignant cell types by exposure to a variety of structurally diverse biological and chemical agents, including cytokines, solvents, hormones, vitamins, tumor promoters and cancer chemotherapeutic agents. The induced transformation to a terminally differentiated phenotype demonstrates the reversibility of the malignant state.

A number of structurally diverse cancer chemotherapeutic agents, such as the anthracyclines, epipodophyllotoxins, alkylating agents, vinca alkaloids, antifolates, purine antimetabolites, and pyrimidine nucleoside analogs, are capable of inducing differentiation, making it conceivable that the antineoplastic effects of these agents are the result of a combination of both cytodestruction and terminal differentiation. The alterations responsible for the termination of proliferation by these two mechanisms in some cases are the result of different metabolic events. We have shown that for the antileukemic agent 6-thioguanine, the free base is the form that initiates the maturation process by interacting with benzodiazepine receptors present on the surface of the leukemic cells, while conversion to the nucleotide forms of the 6-thiopurine is responsible for cytotoxicity. In an analogous manner the trisaccharide-containing anthracyclines, aclacinomycin and marcellomycin, are capable of inducing differentiation, whereas the monosaccharide-containing anthracyclines, adriamycin and pyromycin, cause cytodestruction. The granulocyte colony-stimulating factor (G-CSF) and its receptor constitute an example of the importance of a physiological cytokine to the differentiation process.

Termination of proliferation through the induction of differentiation is a programmed event and the production of a differentiated phenotype results in a partial normalization of cellular events. This has been shown by the demonstration that leukemia cells primarily express a facilitated diffusion transport system for the pyrimidine nucleoside uridine, which tends to equilibrate internal and external concentrations of this ribonucleoside in a manner characteristic of most neoplastic tissues. The induction of differentiation by dimethylsulfoxide or by 12-O-tetradecanoylphorbol 13-acetate causes a down-regulation of the facilitated transport mechanism and the predominance of a Na+-dependent active transporter characteristic of normal tissue. This results in an accumulation of free uridine in the mature cells. Studies conducted with the HL-60 human promyelocytic leukemia and the WEHI-3B monomyelocytic leukemia have been used to provide the examples of these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Begley, CG, Metcalf, D, Nicola, NA (1987) Primary human myeloid leukemia cells: comparative responsiveness to proliferative stimulation by GM-CSF or G-CSF and membrane expression of CSF receptors. Leukemia 1:1–8.

    PubMed  CAS  Google Scholar 

  • Begley, CGD, Metcalf, D, Nicola, NA (1987) Purified colony-stimulating factors (G-CSF and GM-CSF) induce differentiation in human HL-60 leukemic cells with suppression of clonogenicity. Int J Cancer 39:99–105

    Article  PubMed  CAS  Google Scholar 

  • Berdel, WE, Danhauser-Riedl, S, Steinhauser, G, Winton, EF (1989) Various human hematopoietic growth factors (interleukin-3, GM-CSF, G-CSF) stimulate clonal growth of nonhematopoietic tumor cells. Blood 73:80–83

    PubMed  CAS  Google Scholar 

  • Bolande, RP (1985) Spontaneous regression and cytodifferentiation of cancer in early life: the oncogenic grace period. Survey and Synthesis of Pathology Research 4:296–311

    PubMed  CAS  Google Scholar 

  • Burgess, AW, Metcalf, D (1980) Characterization of a serum factor stimulating the differentiation of myelomonocytic leukemic cells. Int J Cancer 39: 647–654

    Article  Google Scholar 

  • Bussolino, F, Wang, JM, Defilippi, P, Turrini, F, Sanavio, F, Edgell, C-JS, Agüeita, M, Arese, P, Mantovani, A (1989) Granulocyte and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471–473

    Article  PubMed  CAS  Google Scholar 

  • Castaigns, S, Chomienne, C, Daniel, MT, Ballerini, P, Berger, R, Fenaux, P, Degos, L (1990) All-trans retinoic acid as a differentiation therapy for acute promyelocyte leukemia. I. Clinical Results. Blood 76:1704–1709

    Google Scholar 

  • Colombo, MP, Ferrari, G, Stoppacciaro, A, Parenza, M, Rodolfo, M, Mavilio, F, Parmiani, G (1991) Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. J Exptl Med 173:889–897.

    Article  CAS  Google Scholar 

  • Crooke, ST, DuVernay, VH, Golvan, L, Prestayko, AW (1978) Structure-activity relationships of anthracyclines relative to effects on macromolecular synthesis. Mol Pharmacol 14:290–298

    PubMed  CAS  Google Scholar 

  • Darnowski, JW, Handschumacher, RE (1986) Tissue uridine pools: evidence in vivo of a concentrative mechanism for uridine uptake. Cancer Res 46:3490–3494

    PubMed  CAS  Google Scholar 

  • Darnowski, JW, Holdridge, C, Handschumacher, RE (1987) Concentrative uridine transport by murine splenocytes: kinetics, substrate specificity and sodium dependency. Cancer Res 47:2614–2619

    PubMed  CAS  Google Scholar 

  • DuVernay, VH, Pachter, JA, Crooke, ST (1979) Deoxyribonucleic acid binding studies on several new anthracycline antitumor antibiotics. Sequence preference and structure activity relationships of marcellomycin and its analogues as compared to adriamycin. Biochemistry 18:4024–4030

    Article  PubMed  CAS  Google Scholar 

  • Fearon, ER, Burke, PJ, Schiffer, CA, Zehnbauer, BA, Vogelstein, B (1986) Differentiation of leukemia cells to polymorphonuclear leukocytes in patients with acute nonlymphocytic leukemia. New Eng J Med 315:15–24

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga, R, Ishizaka-Ikeda, E, Seto, Y, Nagata, S (1990) Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell 61:341–350

    Article  PubMed  CAS  Google Scholar 

  • Gusella, JF, Houseman, D (1976) Induction of erythroid differentiation in vitro by purines and purine analogues. Cell 8:263–269

    Article  PubMed  CAS  Google Scholar 

  • Huang, M-E, Ye, Y-C, Chen, S-R, Chai, J-R, Lu, J-X, Zhoa, L, Gu, L-J, Wang, Z-Y (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572

    PubMed  CAS  Google Scholar 

  • Ishiguro, K, Sartorelli, AC (1985) Enhancement of the differentiation-inducing properties of 6-thioguanine by hypoxanthine and its nucleosides in HL-60 promyelocytic leukemia cells. Cancer Res 45:91–95

    PubMed  CAS  Google Scholar 

  • Ishiguro, K, Schwartz, EL, Sartorelli, AC (1984) Characterization of the metabolic forms of 6-thioguanine responsible for cytotoxicity and induction of differentiation of HL-60 acute promyelocytic leukemia cells. J Cell Physiol 121:383–390

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro, K, Taft, WC, DeLorenzo, RJ, Sartorelli, AC (1987) The role of benzodiazepine receptors in the induction of differentiation of HL-60 leukemia cells by benzodiazepines and purines. J Cell Physiol 131:226–234

    Article  PubMed  CAS  Google Scholar 

  • Jarvis, SM (1989) Characterization of sodium-dependent transport in rabbit intestinal brush-border membrane vesicles. Biochim Biophys Acta 979:132–138

    Article  PubMed  CAS  Google Scholar 

  • Jarvis, SM, Williams, TC, Lee, CW, Cheeseman, CI (1989) Active transport of nucleosides and nucleoside drugs. Biochem Soc Trans 17:448–449

    PubMed  CAS  Google Scholar 

  • Koeffler, HP (1983) Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications. Blood 62:709–721

    PubMed  CAS  Google Scholar 

  • Lee, C-W, Sokoloski, JA, Sartorelli, AC, Handschumacher, RE (1991) Induction of the differentiation of HL-60 cells by phorbol 12-myristate 13-acetate activates a Na+-dependent uridine-transport system. Biochem J 274:85–90

    PubMed  CAS  Google Scholar 

  • Lee, C-W, Sokoloski, JA, Sartorelli, AC, Handschumacher, RE (1994) Differentiation of HL-60 cells by dimethylsulfoxide activates a Na+-dependent nucleoside transport system. In vivo 8:795–802

    Google Scholar 

  • Lee, CW, Cheeseman, CI, Jarvis, SM (1988) Na+- and K+-dependent uridine transport in rat renal brush-border membrane vesicles. Biochim Biophys Acta 942:139–149

    Article  PubMed  CAS  Google Scholar 

  • Lee, CW, Cheeseman, CI, Jarvis, SM (1990) Transport characteristics of renal brush-border Na+- and Independent carriers Am J Physiol 25:F1203–F1210

    Google Scholar 

  • LeHir, M, Dubach, VC (1985) Uphill transport of pyrimidine nucleosides in renal brush border vesicles. Pflugers Arch 404:238–243

    Article  CAS  Google Scholar 

  • Li, J, Koay, DC, Sartorelli, AC (1995) The role of DNA ploidy in the differentiation of WEHI-3B D- leukemia cells transfected with the granulocyte colony-stimulating factor receptor gene. Exptl Cell Res 219:579–588

    Article  PubMed  CAS  Google Scholar 

  • Li, J, Koay, DC, Xiao, H, Sartorelli, AC (1993) Regulation of the differentiation of WEHI-3B D+ leukemia cells by granulocyte colony-stimulating factor receptor. J Cell Biol 120:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Li, J, Sartorelli, AC (1992) Synergistic induction of the differentiation of WEHI-3B D- myelomonocytic leukemia cells by retinoic acid and granulocyte colony-stimulating factor. Leukemia Res 16:571–576

    Article  CAS  Google Scholar 

  • Matsumoto, Y, Saiki, I, Murata, J, Okuyama, H, Tamura, M, Azuma, I (1991) Recombinant human granulocyte colony-stimulating factor inhibits the metastasis of hematogenous and non-hematogenous tumors in mice. Int J Cancer 49:444–449

    Article  PubMed  CAS  Google Scholar 

  • Metcalf, D (1980) Clonal extinction of myelomonocytic leukemic cells by serum from mice injected with endotoxin. Int J Cancer 25:225–233

    Article  PubMed  CAS  Google Scholar 

  • Metcalf, D, Nicola, NA (1982) Autoinduction of differentiation in WEHI-3B leukemia cells. Int J Cancer 30:773–780

    Article  PubMed  CAS  Google Scholar 

  • Morin, MJ, Sartorelli, AC (1984) Inhibition of glycoprotein biosynthesis by the inducers of HL-60 cell differentiation, aclacinomycin A and marcellomycin. Cancer Res 44:2807–2812

    PubMed  CAS  Google Scholar 

  • Nicola, NA, Begley, CG, Metcalf, D (1985) Identification of the human analogue of a regulator that induces differentiation in murine leukemic cells. Nature 314:625–628

    Article  PubMed  CAS  Google Scholar 

  • Nicola, NA, Metcalf, D (1984) Binding of differentiation-inducer, granulocyte colony-stimulating factor, to responsive but not unresponsive leukemia cell lines. Proc Natl Acad Sci USA 81:3765–3769

    Article  PubMed  CAS  Google Scholar 

  • Nicola, NA, Metcalf, D (1985) Binding of 125I-labeled granulocyte colony-stimulating factor to normal murine hemopoietic cells. J Cell Physiol 124:313–321

    Article  PubMed  CAS  Google Scholar 

  • Park, LS, Waldron, PE, Friend, D, Saasenfeld, HM, Price, V, Anderson, D, Cosman, D, Andrews, RG, Berstein, ID, Urdal, DL (1989) Interleukin-3, GM-CSF, and G-CSF receptor expression on cell lines and primary leukemia cells: receptor heterogeneity and relationship to growth factor responsiveness. Blood 74:56–65

    PubMed  CAS  Google Scholar 

  • Reiss, M, Gamba-Vitalo, C, Sartorelli, AC (1986) Induction of tumor cell differentiation as a therapeutic approach: preclinical models for hematopoietic and solid neoplasms. Cancer Treat Rep 70:201–218

    PubMed  CAS  Google Scholar 

  • Sato, S, Sakashita, A, Ishiyama, T, Nakamaki, T, Hino, K-I, Tomoyasu, S, Tsuruoka, N, Honma, Y, Hozumi, M (1992) Possible differentiation treatment with aclacinomycin A in acute myelomonocytic leukemia refractory to conventional chemotherapy. Anticancer Res 12:371–376

    PubMed  CAS  Google Scholar 

  • Schwartz, EL, Brown, BJ, Nierenburg, M, Marsh, JC, Sartorelli, AC (1983) Evaluation of some anthracycline antibiotics in an in vivo model for studying drug-induced human leukemia cell differentiation. Cancer Res 43:2725–2730

    PubMed  CAS  Google Scholar 

  • Schwartz, EL, Ishiguro, K, Sartorelli, AC (1983) Induction of leukemia cell differentiation by chemotherapeutic agents. Adv Enz Reg 21:3–20

    Article  CAS  Google Scholar 

  • Schwartz, EL, Sartorelli, AC (1982) Structure-activity relationships for the induction of differentiation of HL-60 human acute promyelocytic leukemia cells by anthracyclines. Cancer Res 42:2651–2655

    PubMed  CAS  Google Scholar 

  • Schwenk, M, Hegay, E, Lopez del Pino, V (1984) Uridine uptake by isolated intestinal epithelial cells of guinea pig. Biochim Biophys Acta 805:370–374

    Article  PubMed  CAS  Google Scholar 

  • Toki, H, Matsutomo, S, Okabe, K, Shimokawa, T (1989) Remission in hypoplastic acute myeloid leukemia induced by granulocyte colony-stimulating factor. Lancet 1:1389–1390

    Article  PubMed  CAS  Google Scholar 

  • Tsuda, H, Neckers, LM, Pluznik, DH (1986) Colony stimulating factor-induced differentiation of murine Ml myeloid leukemic cells is permissive in early Gl phase. Proc Natl Acad Sci USA 83:4317–4321

    Article  PubMed  CAS  Google Scholar 

  • Uzumaki, H, Okabe, T, Sakaki, N, Hagiwara, K, Takaku, F, Tobita, M, Yasukawa, K, Ito, S, Umezawa, Y (1989) Identification and characterization of receptors for granulocyte colony-stimulating factor on human placenta and trophoblastic cells. Proc Natl Acad Sci USA 86:9323–9326

    Article  PubMed  CAS  Google Scholar 

  • Warrell, Jr, RP, Frankel, SR, Miller, Jr, WH, Scheinberg, DA, Itri, LM, Hittelman, WN, Vyas, R, Andreeff, M, Tafuri, A, Jakubowski, A, Gabrilove, J, Gordon, M, Dmitrovsky, E, (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans retinoic acid). New Eng J Med 324:1385–1393

    Article  PubMed  Google Scholar 

  • Yamasaki, Y, Izumi, Y, Sawada, H, Fujita, K (1991) Probable in vivo induction of differentiation by recombinant human granulocyte colony-stimulating factor (rhG-CSF) in acute promyelocytic leukemia (APL). Brit J Haematol 78:579–580

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sartorelli, A.C., Ishiguro, K., Li, J., Koay, D.C., Sokoloski, J.A. (1996). Differentiation of Malignant Cells as a Therapeutic Approach. In: Tsiftsoglou, A.S., Sartorelli, A.C., Housman, D.E., Dexter, T.M. (eds) Tumor Biology. NATO ASI Series, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61180-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61180-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64735-2

  • Online ISBN: 978-3-642-61180-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics