Evolution of the Mt. Pinatubo Volcanic Cloud and Analysis of Its Effect on the Ozone Amount as Observed from Ground-Based Measurements Performed in Northern and Southern Latitudes

  • S. Godin
  • C. David
  • M. Guirlet
Part of the NATO ASI Series book series (volume 42)


The decay of the Mt. Pinatubo volcanic cloud was monitored by systematic groundbased aerosol lidar systems implemented at the Observatoire de Haute-Provence (OHP, 44°N, 6°E) and at the Antarctic station of Dumont d’Urville (66.4°S, 140°E) Additional backscatter lidar measurements were also performed during the EASOE campaign in Sodankylä (67°N, 26°E). At northern mid-latitude, comparisons with the El Chichon volcanic cloud indicates similar aerosol loading but a longer residence time of the volcanic aerosols especially in the 15- 20 km altitude range. The analysis of the aerosol measurements obtained at the northern and southern polar latitudes shows that mixing can take place at the edge of the polar vortex in the lower stratosphere whereas the vortex remains mainly isolated above, especially in the southern hemisphere. The measurements performed in the winter and spring of 1992 in Dumont d’Urville allow to evaluate the subsidence of air inside the vortex, at a rate of 1 km/month at the 475 K potential temperature level. Besides, an ozone decrease of about 20 % as compared to the long-term climatology was recorded on the ozone sonde measurements performed at OHP in the 17 km to 22 km altitude range, in 1992 - 1993. The maximum depletion was found at the beginning of 1993, when it reached 30 % around 17 km, below the 2 sigma long term variability.


Potential Vorticity Polar Vortex Lower Stratosphere Lidar Measurement Volcanic Aerosol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beekmann M, Ancellet G, Mégie G (1994) Intercomparison Campaign of Vertical Ozone Profiles Including Electrochemichal Sondes of ECC and Brewer-Mast Type and a Ground Based UV-Differential Absorption Lidar. J Atmos Chem 19: 259–288CrossRefGoogle Scholar
  2. Bluth GJS, Doiron SD, Schnetzler CC, Krueger AJ and Walter LS (1992) Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruption. Geophys Res Lett 19: 151–154CrossRefGoogle Scholar
  3. Bojkov RD, Zerefos CS, Balis DS, Ziomas IC, Bais ALF (1993) Record low total ozone during nortehrn winters of 1992 and 1993. Geophys Res Letters 20: 1351–1354CrossRefGoogle Scholar
  4. Brasseur G and Granier C (1992) Mount Pinatubo Aerosol, Chlorofluorocarbons and Ozone depletion. Science 257: 1239–1241CrossRefGoogle Scholar
  5. Chazette P, David C, Lefrère J, Godin S, Pelon J., Mégie G (1995) Comparative Lidar Study of the optical, geometrical and dynamical properties of stratospheric post-volcanic aerosol, following the eruptions of El Chichon and Mount Pinatubo. submitted to J Geophys ResGoogle Scholar
  6. David C (1995) Etude des Nuages Stratosphériques Polaires et des Aérosols Volcaniques en Régions Polaires par Sondage Laser. Thèse de Doctorat, Université Paris VIGoogle Scholar
  7. Deshler T., Johnson BJ and Rozier WR (1993) Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41°N : Vertical profiles, size distribution, and volatility. Geophys Res Lett 20: 1435–1438CrossRefGoogle Scholar
  8. Gleason JF, Barthia PK, Herman JR, McPeters R, Newman P, Stolarski R, Flyn L, Labow G, Larko D, Seftor C, Wellemeyer C, Komhyr WD, Miller AJ, W Planet (1993) Record Low Global Ozone in 1992. Science 260: 523CrossRefGoogle Scholar
  9. Godin S, Megie G, David C, Mitev V, Haner D, Emery Y, Flesia C, Rizi V, Visconti G, Stefanutti L (1994a) Ozone, aerosol and Polar Stratospheric Clouds Measurements during the EASOE Campaign. Proc Quad Ozone Symp: 561 NASA conf Pub: 3266Google Scholar
  10. Godin S, Sarkissian A, David C, Megie G, Pommereau JP, Goutail F, Aimedieu P, Piquard J, Le Bouar E, Stefanutti L, Morandi M, Del Guasta M (1994b) Systematic stratospheric observations on the Antarctic continent at Dumont d’Urville. Proc Quad Ozone Symp: 561 NASA conf Pub: 3266Google Scholar
  11. Godin S, Megie G, David C, Haner D, Flesia C, Emery Y (1994c) Airborne lidar observation of mountain wave induced Polar Stratospheric Clouds during EASOE. Geophys Res Lett 21: 1335CrossRefGoogle Scholar
  12. Hanson J, Lacis A, Ruedy R, Sato M (1992) Potential Climate Impact of Pinatubo Eruption. Geophys Res Lett 19: 215–218CrossRefGoogle Scholar
  13. Hayashida S (1991) Atmospheric effects. Global Volcanism Network Bulletin 16Google Scholar
  14. Hofmann DJ, Harder JW, Roff SR, Rosen JM (1987) Balloon borne Observations of the Development and vertical structure of the Antarctic Ozone hole in 1986. Nature 326: 59–82CrossRefGoogle Scholar
  15. Hofmann DJ, Solomon S (1989) Ozone destruction through heterogeneous chemitry following the erutpion of El Chichon. J Geophys Res 94: 5029CrossRefGoogle Scholar
  16. Jäger H (1992) The Pinatubo Eruption Cloud Observed by lidar at Garmisch-Partenkirchen Geophys Res Lett 19: 191–194CrossRefGoogle Scholar
  17. Jager H (1994) European Stratospheric Monitoring Station II final reportGoogle Scholar
  18. Labitzke K, Mc Cormick MP (1992) Stratospheric temperature increases due to Pinatubo aerosol. Geophys Res Lett 19: 207–210CrossRefGoogle Scholar
  19. McCormick MP, Veiga RE (1992) SAGE II measurements of early Pinatubo aerosol Geophys Res Lett 19: 155–158CrossRefGoogle Scholar
  20. McPeters RD (1993) The Atmospheric S02 budget for Pinatubo derived from NOAA-11 SBUV/2 spectral data. Geophys Res Let 20: 1971–1974CrossRefGoogle Scholar
  21. Michalsky JJ, Herman BM, Larson NR (1984) Mid-latitude stratospheric aerosol layer enhancement by El Chichon : the first year. Geophys Res Lett 11: 76–79CrossRefGoogle Scholar
  22. Neuber R, Beyerle G, Fiocco G, Di Sarra A, Fricke KH, David C, Godin S, Knudsen BM, Stefanutti L, Vaughan G, Wolf JP (1994) Latitudinal distribution of stratospheric aerosol during the EASOE winter 1991/92. Geophys Res Lett 21: 1283CrossRefGoogle Scholar
  23. Pitts MC, Thomason LW (1993) The Impact Of the Eruptions of Mount Pinatubo and Cerro Hudson on Antarctic Aerosol Levels during the 1991 Austral Spring. Geophys Res Lett 19: 2451–2454CrossRefGoogle Scholar
  24. Schoeberl MR (1992) The structure of the Polar Vortex. J Geophys Res 97: 7859–7882Google Scholar
  25. Stein B, Del Guasta M, Kolenda J, Morandi M, Rairoux P, Stefanutti L, Wolf JP, Wöste L (1994) Straospheric Aerosol Size Distribution from Multispectral Lidar Measurements at Sodankylä during EASOE. Geophys Res Lett 21: 1311CrossRefGoogle Scholar
  26. Tie XX, Brasseur G, Briegleb B, Granier C (1994) Two-Dimensional Simulation of Pinatubo Aerosol and its Effect on Stratospheric Ozone. J Geophys Res 99: 20545–20562CrossRefGoogle Scholar
  27. Trepte CR, RE Veiga, M.P. McCormick (1993) The Poleward Dispersal of Mount Pinatubo Volcanic Aerosol. J Geophys Res 98: 18562–18573CrossRefGoogle Scholar
  28. Turco RP, Drdla K, Tabazadeh A, Hamill P (1993) Heterogeneous Chemisry of Polar Stratospheric Clouds and Volcanic Aerosol. NATO ASI Series I 8 Springer-Verlag Berlin HeidelbergGoogle Scholar
  29. WMO (1988) Report of the International Ozone Trends Panel, 18: 179Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • S. Godin
    • 1
  • C. David
    • 1
  • M. Guirlet
    • 1
  1. 1.Service d’Aéronomie - CNRSUniversité Paris VIParisFrance

Personalised recommendations