Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Hansen J R (1978) Dehydration and hydration kinetics of soyabean proteins. J Agric and Food Chem 26, 297–301

    Article  CAS  Google Scholar 

  • Lewis P S (1926) The kinetics of protein denaturation,I. The effect of Variation in the hydrogen ion concentration on the velocity of the heat denaturation of oxyhaemoglobin. Biochem J 20,965–992

    CAS  Google Scholar 

  • Eyring H and Stearn A E (1939) The application of the theory of absolute reaction rates to proteins. Chem Reviews 24, 253 (1939)

    Article  CAS  Google Scholar 

  • Tuszynski W B (1971) A kinetic model of the clotting of casein by rennet. J Dairy Res 38, 115–125

    Article  CAS  Google Scholar 

  • White J C D and Sweetsur A W M (1977) Kinetics of heat induced aggregation of milk protein. J Dairy Res 44, 237–247

    Article  CAS  Google Scholar 

  • Tammann O (1895) Zur Wirkung ungeformter Fermente. Z Phys Chemie 18, 426–442

    Google Scholar 

  • Haurowitz F et al. (1954) Denaturation of hemoglobin by alkali. J Phys Chem 58, 103–105

    Article  CAS  Google Scholar 

  • Lyster R L J (1970) The denaturation of a-Lactalbumin and a-Lactoglobulin in heated milk. J Dairy Res 37, 233–43

    Article  CAS  Google Scholar 

  • Eipeson W E et al. (1974) Kinetics of thermal precipitation of leaf proteins from lucern. J Food Sci and Technol India 2, 66–70

    Google Scholar 

  • Luers V H und Landauer M (1922) über die Kinetik der Hitzegerinnung von Proteinen. Angew Chemie 35, 469–472

    Article  CAS  Google Scholar 

  • Labuza T P et al. (1982) Kinetics of protein quality change in egg noodles stored under constant and fluetuating temperatures. Cereal Chem 59, 142–148

    CAS  Google Scholar 

  • Tsao T F et al. (1973) Available lysine in heated fortified rice meal. Food Sci. 43, 1106–1108

    Article  Google Scholar 

  • Wolf J C et al. (1981) Mathematical model for predicting free lysine and methionine losses during elevated temperature processing. Progr Food Nutr Sci 5, 405–413

    CAS  Google Scholar 

  • Wolf J C et al. (1982) Predicting available lysine losses during heat processing. J Food Proc Eng 6, 201–218

    Article  Google Scholar 

  • Taira H and Sukarai Y (1966) Studies on amino acid contents of processed soybean Pt 8. Effect of heating on total lysine on available lysine in defatted soybean flour. Jap J Nutr Food 18, 359

    CAS  Google Scholar 

  • Labuza T P and Saltmarch M (1981) Kinetics of browning and protein quality loss in whey powders during steady State and nonsteady State storage conditions. J Food Sci 47, 92–96

    Article  CAS  Google Scholar 

  • Williams M P and Nelson P E (1974) Kinetics of thermal degradation of methylmethionine sulfonium ions in citrate buffers and in sweet corn and tomato serum. J Food Sci 39, 457–460

    Article  CAS  Google Scholar 

  • Greenberg D M and Winnick J (1940) Plant proteases; III. Kinetic properties. J Biol Chem 135, 781–787

    CAS  Google Scholar 

  • Butler J A V (1941) The molecular kinetics of trypsin action. J A A C S (2), 2971–2974

    Article  Google Scholar 

  • Resende R et al. (1969) Thermal destruetions and regeneration of enzymes in green bean and spinach puree. Food Tech 23, 63–66

    CAS  Google Scholar 

  • Mc Gilliviary J H (1930) The denaturation of pancreatic lipase by heat. Biochem J 24, 891–904

    Google Scholar 

  • Farkas D F et al. (1962) Studies on the kinetics of lipoxidase inactivation using thermal and ionizing energy. J Food Sci 27, 262–276

    Article  Google Scholar 

  • Kunitz M (1937) Formation of trypsin from trypsinogen by an enzyme produced by a mold of the genus Penicillium. J Gen Phsl 21, 601–620

    Article  Google Scholar 

  • Zoueil M E and Esselen W B (1958) Thermal destruetion rates and regeneration of peroxidase in green beans and turnips. Food Res 24, 119–133

    Google Scholar 

  • Vavek D et al. (1982) Kinetics of peroxidase deactivation in blanching of corn on the cob. J Agric and Food Chem 30, 967–970

    Article  Google Scholar 

  • Joffe F M and Ball C O (1962) Kinetics and energetics of thermal inactivation and the generation rates of a peroxidase system. J Food Sci 27, 58–592

    Article  Google Scholar 

  • Zilva S S (1914) The rate of inactivation by heat of peroxidase in milk. Biochem J 8, 656–669

    CAS  Google Scholar 

  • Ling A C and Lund D B (1978). Determining kinetic parameters of heat resistant and heat labile isoenzymes from thermal destruction curves. J Food Sci 43, 1307–1310

    Article  CAS  Google Scholar 

  • Blang S M and Hagratawata B (1972) Kinetics of aerobic oxidation of ascorbic acid. J Pharm Sci 61, 556–562

    Article  Google Scholar 

  • Huelin F E (1953) Studies on the anaerobic decomposition of ascorbic acid. Food Res 18, 633–639

    Google Scholar 

  • Neumen H J et al. (1965) Effect of drying temperatures on initial quality and storage stability of dehydrofrozen peas. Food Techn 19, 125

    Google Scholar 

  • Labuza T P (1972) Nutrient losses during drying and storage of dehydrated foods CRC Critical Rev. in Food Techn. 3, 217–240 (1972)

    CAS  Google Scholar 

  • Kirk J et al. (1977) Dehydration of ascorbic acid in a dehydrated food system. J Food Sci 42, 1274–1279

    Article  CAS  Google Scholar 

  • Lee S H and Labuza T P (1975) Destruction of ascorbic acid as a funetion of water activity. J Food Sci 40, 370–373 (1975)

    Article  CAS  Google Scholar 

  • Saguy I et al. (1978) Accelerated method for determining the kinetic model of ascorbic acid loss during dehydration. J Food Sci 43, 1860–1864

    Google Scholar 

  • Waletzko P and Labuza T P (1976) Accelerated shelf life testing of intermediate moisture food in air and in an oxygen free atmosphere. J Food Sci 41, 1338–1344

    Article  CAS  Google Scholar 

  • Dennison D B and Kirk J R (1978) Oxygen effect on the degradation of ascorbic acid in a dehydrated food system. J Food Sci 43, 609–612

    Article  CAS  Google Scholar 

  • Garrett E R (1956) Prediction of stability of pharmaceutical preparations; II. Vitamin stability in liquid multivitamin preparations. J Pharm Sci 45, 171–178

    Article  CAS  Google Scholar 

  • Laing B M et al. (1978) Degradation kinetics of ascorbic acid at high temperature and water activity. J Food Sci 43, 1440–1443

    Article  Google Scholar 

  • Eison-Perchonek T. W. und Downes T W (1982) Kinetic of ascorbic acid and autoxydation as a funetion of dissolved oxygen concentration and temperature. J Food Sci 47, 765–767, 773

    Article  Google Scholar 

  • Evenden W and Marsh G L (1947) Effect of storage temperature on retention of ascorbic acid in orange juice. Food Res 13, 244–253

    Google Scholar 

  • Lee Y C et al. (1977) Kinetics and Computer-Simulation of ascorbic acid stability of tomato juice as funetions of temperature, pH and metal catalyst. J Food Sci 42, 640–641

    Article  CAS  Google Scholar 

  • Vojnovich C and Pfeifer V J (1970) Stability of ascorbic acid in blends with wheat flour, CSM and infant cereals. Cereal Sci Today 15, 317

    Google Scholar 

  • Reimer J and Karel M (1977) Shelf life studies of vitamin C during food storage, prediction of L-ascorbic acid retention in dehydrated tomato juice. J Food Process and Preservation 1, 293

    Article  Google Scholar 

  • Cameron E J (1955) Retention of Nutrients during canning National Canners Association. Washington DC

    Google Scholar 

  • Gami D B and Chen T S (1985) Kinetics of folacin destruction in Swiss chard during storage. J Food Sci 50, 447–449, 453

    Article  CAS  Google Scholar 

  • Frost D V and Mc Intire J C (1944) The hydrolysis of pantothenate; A first order reaction-relation to thiamin stability. J Am Soc 66, 425–427

    Article  CAS  Google Scholar 

  • Hamm D J and Lund D B (1978) Kinetic parameters for thermal inactivation of pantothenic acid. J Food Sci 53, 63–633

    Google Scholar 

  • Evans S R et al. (1981) Thermal degradation of pyridoxine hydrochloride in dehydrated model food systems. J Food Sci 46, 555–558, 563

    Article  CAS  Google Scholar 

  • Woodcock E A et al. (1982) Riboflavin photochemical degradation in pasta measured by high Performance liquid chromatography. J Food Sci 47, 545–549, 555

    Article  CAS  Google Scholar 

  • Singh R P et al. (1975) Kinetic analyses of induced riboflavin loss in whole milk. J Food Sci 40, 164–167

    Article  CAS  Google Scholar 

  • Fellicotti E and Esselen W B (1957) Thermal destruction rates of thiamin in purred meats and vegetables. Food Techn 11, 77–84

    Google Scholar 

  • Bendix G H et al. (1951) Factors influencing the stability of thiamin during heat Sterilisation. J Food Res 16, 494–503

    CAS  Google Scholar 

  • Mulley E A (1975) Kinetics of thiamin degradation by heat. J Food Sci 40, 77–84

    Google Scholar 

  • Kamman J F et al. (1981) Kinetics of thiamin and riboflavin loss in pasta as a funetion of constant and variable storage conditions. J Food Sci 46, 1457–1461

    Article  CAS  Google Scholar 

  • Farrer K T H (1955) The thermal destruction of vitamin B1 in foods. Adv Food Res 6, 257–312

    CAS  Google Scholar 

  • Rice E E and Beuk J F (1945) Reaction rates for decomposition of thiamin in pork at various cooking temperatures. Food Res 10, 99–107

    Google Scholar 

  • Lenz M K and Lund D B (1982) Experimental procedurs for determining destruction kinetics of food components. Food Techn 34, 51–55

    Google Scholar 

  • Bell J W et al. (1979) Catalytic effects of stainless steel, teflon, or glass on thermal degradation of thiamin in a tubular laminar flow reactor. J Agric and Food Chem 27, 384–386

    Article  CAS  Google Scholar 

  • Corry J E L (1973) The water relations and heat resistance of microorganisms, in: Prog. in Industrial Microbiology, 12, 73–108

    CAS  Google Scholar 

  • Briggs A (1960) The resistance of spores of the genus Bacillus to phenol, heat and radiation. J Appl Bact 29, 490–504

    Article  Google Scholar 

  • Collier C P and Towsend C T (1961) The resistance of bacterial spores to superheated steam. J Dairy Sci 44, 1989–1996

    Article  Google Scholar 

  • Perkin A G et al. (1977) Thermal death kinetics of Bacillus stearothermophilus spores at ultrahigh temperatures, II. Effect of heating period on experimental results. J Food Techn 12, 131–148

    Article  Google Scholar 

  • Fox K and Pflug I J (1968) Effect of temperatures and gas velocity on the dry heat destruction rate of bacterial spores. Appl Microbiol 16, 343–348

    CAS  Google Scholar 

  • Wang DI-C et al. (1964) Kinetics of death of bacteria spores at elevated temperatures. Appl Microbiol 12, 45–454

    Google Scholar 

  • Harnulv B D and Snygg B G (1972) Heat resistance of Bacillus subtilis spores at various water activities. J Appl Bact 35, 615–624

    Article  CAS  Google Scholar 

  • Van Uden N V and Madeira-Lopes (1976) Yield and maintenance relations of yeast growth in the chemostat at superoptimal temperatures. Biotechnology and-engineering 18, 791–804

    Google Scholar 

  • Sognefest P et al. (1948) Effect of pH on thermal process requirements of canned foods. Food Res. 13, 400–410

    CAS  Google Scholar 

  • Stumbo C R et al. (1950) Nature of thermal death time curves for P.A. 3679 and Clostridium botulinum. Food Technol 4, 321–326

    Google Scholar 

  • Xezones H and Hutchings I J (1965) Thermal resistance of Clostridium botulinum (62A) as affected by fundamental food constituents. Food Techn 19, 113–115

    Google Scholar 

  • Kaplan A M et al. (1974) Significance of variations in observed slopes of thermal death time curves for putrefactic anaerobes. Food Res 19, 173–184

    Google Scholar 

  • Odlaug T E and Pflug I J (1977) Thermal destruction of Clostridium botulinum spores suspended in tomato juice in aluminum thermal death time tubes. Appl and Env Microbiol 34, 429–433 (1977)

    Google Scholar 

  • Bradshaw J G et al. (1977) Thermal inactivation of ideal loop-reactive Clostridium perfringens Type A strains in phosphate buffer and beef gravy. Appl and Env Microbiol 34, 280–284

    CAS  Google Scholar 

  • Warren D S (1973) A physicochemical model for the death-rate of a microorganism. J Food Techn 8, 247–257

    Article  CAS  Google Scholar 

  • Xezones H et al. (1965) Processing requirements for a heat tolerant anaerobe. Food Techn 18, 1001–1002

    Google Scholar 

  • Roberts J A (1968) Heat and radiation resistance and activation of spores of Clostridium welchii. J Appl Bact 31, 133–144

    Article  CAS  Google Scholar 

  • Evans D A et al. (1970) Heat resistance of certain pathogenic bacteria in milk using a commercial plate heat exchanger. J Dairy Sci 53, 1659–1665

    Article  CAS  Google Scholar 

  • Dega C A et al. (1972) Heat resistance of salmonellae in concentrated milk. Appl Microbiol 23, 415–420

    CAS  Google Scholar 

  • Collins E B (1961) Resistance of certain bacteria to cottage cheese cooking procedures. J Dairy Sci 44, 1989–1996

    Article  Google Scholar 

  • Read R B jr. et al. (1961) Studies on thermal destruction of E. coli in milk and milk produets. Appl Microbiol 9, 415–418

    Google Scholar 

  • Van Uden N V et al. (1968) Temperature funetions of thermal death in yeast and their relation to the maximum temperature for growth. Archiv für Mikrobiol 61, 381–393

    Article  Google Scholar 

  • Sognefest P et al. (1948) Effect of pH on thermal process requirements of canned foods. Food Res 13, 400–410

    CAS  Google Scholar 

  • Collier C P and Townsend C T (1956) The resistance of bacterial spores to superheated steam. Food Techn 10, 477–481

    Google Scholar 

  • Sevastronova N A et al. (1971) The effect of sorbic acid and heating of Pseudomonas fluorescens Konservnaya i ovoshchesushilnaya promyslenost, 30–31 (1971)

    Google Scholar 

  • Elizondo H and Labuza T P (1974) Death kinetics of microorganism in spray draying. Biotechn. and Bioeng 15, 1245–1259

    Article  Google Scholar 

  • Gibson B (1973) The effect of high sugar concentrations on the heat resistance of vegetative microorganisms. J Appl Bact 36, 365–376

    Article  CAS  Google Scholar 

  • Angelotti R et al. (1961) Time temperature effects on Salmonellae and Staphylococci in foods, III. Thermal death time studies. Appl Microbiol 9, 308–315

    CAS  Google Scholar 

  • Anellis A et al. (1954) Heat resistance in liquid eggs of some strains of the genus salmonellae Food Res 19, 377–395

    Google Scholar 

  • Goepfert J M and Biggie R A (1968) Heat resistance of Salmonellae typhimurium and senftenberg 775-w in milk chocolate. Appl Microbiol 16, 1939–1940

    CAS  Google Scholar 

  • Cotterill O J and J. Glauert J (1971) Thermal resistance of Salmonellae in eggs yolk containing 10 percent sugar or salt after storage at various temperatures. Poultry Sci. 50, 109–115

    CAS  Google Scholar 

  • Baird-Parker A C et al. (1970) The effect of water activity on the heat resistance of heat sensitive and heat resistant strains of Salmonellae. J Appl Bact 33, 512–522 (1970)

    Article  Google Scholar 

  • Thomas C T et al. (1966) Thermal resistance of Salmonellae and Staphylococci in foods. Appl Microbiol 14, 315–320

    Google Scholar 

  • Li Cari J J and Potter N N (1970) Salmonella survial during spray drying and subsequent handling of skim milk powder. J Dairy Sci 53, 865–882

    Article  CAS  Google Scholar 

  • Walker G C and Harmon L G (1966) Thermal resistance of Staphylococcus aureus in milk, whey and phosphate buffer. Appl Microbiol 14, 584

    CAS  Google Scholar 

  • Evans D A et al. (1970) Heat resistance of certain pathogenic bacteria in milk using a commercial plate heat exchanger. J Dairy Sci 53, 1659–1665

    Article  CAS  Google Scholar 

  • Scott W J (1937) The growth of microorganism on ox muscle; II. The influence of temperature Austr J of the Council for Sci and Ind Res 10, 338–350

    Google Scholar 

  • Greene V W and Jezeski J J (1954) The influence of temperature on the development of several psychrophilic bacteria of dairy origin. Appl Microbiol 2, 110–117

    CAS  Google Scholar 

  • Barg E A and Hopton J W (1969) Psychrophilic properties and the temperature characteristic of growth of bacteria. J Bact 100, 552–553

    Google Scholar 

  • Ingraham J L (1958) Growth of psychrophilic bacteria. J Bact 76, 75–80

    CAS  Google Scholar 

  • Slaton A (1916) The rate of growth of bacteria. J Chem Soc (London) 109, 2–10

    Google Scholar 

  • Harder W and Veldkamp H (1971) Competition of marine psychrophilic bacteria at low temperatures. Ant van Leeuwenholk 37, 51–63

    Article  CAS  Google Scholar 

  • Olson R H and Jesetzki J J (1963) Some effects of carbon source, aeration, and temperature on growth of a psychrophilic strain of Pseudomonas fluorescence. J Bact 86, 429–433

    Google Scholar 

  • Maillard L C, CR. (1912) Acad Sci Ser 154, 2, 66 (1912); ibid 155,1554

    Google Scholar 

  • Amadori M, Atti R. (1931) Acad Naz Lincei Mem, Cl Sci Fis Mat Nat 13, 72

    CAS  Google Scholar 

  • Heyns K et al. (1957) Chem Ber 90, 2039

    Article  CAS  Google Scholar 

  • Paulsen H et.al. The carbohydrates: Chemistry and Biochemistry (ed. by D Horton) Vol IB, Academic Press, New York 1980, p. 881

    Google Scholar 

  • Westphal G u Kroh L (1986) Nahrung 29, 757, 765

    Article  Google Scholar 

  • Baltes W (1986) Lebensmittel-und Gerichtl Chemie 40, 49

    CAS  Google Scholar 

  • Wittmann R u. Eichner K (1989) Z Lebensm Unters Forsch 188, 212

    Article  CAS  Google Scholar 

  • Beck J et al. (1988) Carbohydrate Res 177, 240

    Article  CAS  Google Scholar 

  • Ledl F u. Schleicher E (1990) Angew Chemie 102, 597

    Article  CAS  Google Scholar 

  • Namiki M (1989) Adv Food Res 38, 155

    Google Scholar 

  • Baynes J W (1989) “The MAILLARD reaction in Aging, Diabetes and Nutrition”(ed. by V M Monnier), Prog Clin Biol Res 304, AR Lin Inc, New York

    Google Scholar 

  • Hogde J E et al. (1963) Proc Am Soc Brew Chem 84

    Google Scholar 

  • Ledl F et al. (1986) Z Lebensm Unters Forsch 182, 12

    Article  Google Scholar 

  • Fujimaki M u M Namiki M (1986) “Aminocarbonyl reactions in Food and Biological systems” (ed. by H Kato) Dev Food Sci 13, Elsevier, Amsterdam

    Google Scholar 

  • Kato Y et al. (1986) J Agric Food Chem 34, 351

    Article  CAS  Google Scholar 

  • Kroh L et al. (1989) Z Lebensm Unters Forsch 188, 351

    Article  Google Scholar 

  • Shigematsu H et al. (1971) Agric Biol Chem 35, 2097

    Article  CAS  Google Scholar 

  • Hodge J E (1953) J Agric Food 1, 928

    Article  CAS  Google Scholar 

  • Anet E F L J (1959) Austr J Chem 12, 491

    Article  CAS  Google Scholar 

  • Baltes W (1973) Ernährungsumschau 20, 35

    CAS  Google Scholar 

  • Olano F et al. (1992) Food Chem 43, 351

    Article  CAS  Google Scholar 

  • Yaylayan VA u. W. M. Baiser W M (1992) “Physical Chemistry of Foods” (ed. by H G Schwartzberg u. RW Hartel) Verlag Marcel Dekker Inc, New York-Basel-Hongkong

    Google Scholar 

  • Labuza T P, Reineccius G A, Monnier V M, Brien J O and Baynes J W (1994) “Maillard-Reaction in Chemistry, Food and Health”, The Royal Society of Chemistry

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Westphal, G., Buhr, H., Otto, H. (1996). Anhang. In: Reaktionskinetik in Lebensmitteln. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61167-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61167-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64727-7

  • Online ISBN: 978-3-642-61167-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics