Skip to main content

Protein Folding In The Cell: The Role Of Molecular Chaperones

  • Conference paper
Molecular Dynamics of Biomembranes

Part of the book series: NATO ASI Series ((ASIH,volume 96))

  • 123 Accesses

Abstract

USA Understanding the mechanisms and pathways of protein folding constitutes a problem of fundamental biological significance. It has been known for more than three decades that all the information required for the acqisition of the native state is contained in the linear amino acid sequence of the polypeptide chain. Proteins are capable of spontaneous folding in the test-tube, at least under carefully chosen conditions, and this has led to the view that also within cells newly-synthesized polypeptides reach their native state in an essentially spontaneous reaction. Only more recently has it been realized that this is not generally the case. Cells contain a complex machinery of proteins, folding catalysts and so-called molecular chaperones, which mediate folding in the cytosol as well as within subcellular compartments such as mitochondria, chloroplasts and the endoplasmic reticulum (Hendrick and Hartl, 1993; Hard et al. , 1994; Hartl and Martin, 1995). Molecular chaperones, mostly constitutively expressed stress proteins, play a preeminent role in these processes and are the main focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blond-Elguindi, S., Cwirla, S.E., Dower, W.J., Lipshutz, R.J., Sprang, S.R.,Sambrook, J.F. & Gething, M.-J.H. (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP.Cell 75,717–728

    Article  PubMed  CAS  Google Scholar 

  • Braig, K., Otwinowski, Z., Hegda, R., Boisvert, D., Joahimiak, A., Horwich, A.L. & Sigler, P.B. (1994) The crystal structure of GroEL at 2.8 A resolution. Nature, in press

    Google Scholar 

  • Caplan, A.J., Cyr, D. & Douglas, M.G. (1993) Eukaryotic homologues ofEscherichia coli dnaJ: A diverse protein family that functions with HSP70 stress proteins. Mol. Biol. Cell 4, 555–563

    PubMed  CAS  Google Scholar 

  • Chen, S., Roseman, A.M., Hunter, A.S., Wood, S.P., Burston, S.G., Ranson, N.A., Clarke, A.R. & Saibil, H.R. (1994) Location of a folding protein and shape changes in GroELGroES complexes imaged by cryo-electron microscopy. Nature 371, 261–264

    Article  PubMed  CAS  Google Scholar 

  • Ellis, J. (1987) Proteins as molecular chaperones. Nature 328,378–379

    Article  PubMed  CAS  Google Scholar 

  • Engel, A., Hayer-Hartl, M., Hartl, F.-U. (1995) Symmetrical vs. asymmetrical GroEL-GroES chaperonin complexes: Evaluation of functional significance. Science 269, 832–836

    Article  PubMed  CAS  Google Scholar 

  • Fenton, W.A., Kashi, Y., Furtak, K. & Horwich, A.L. (1994) Functional analysis of the chaperonin GroEL: Identification of residues required for polypeptide binding and release. Nature, in press

    Google Scholar 

  • Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353:726–730

    Article  PubMed  CAS  Google Scholar 

  • Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F.U. (1994) Folding of nascent poy pep tide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111–117

    Article  PubMed  CAS  Google Scholar 

  • Gaitanaris, G.A., Vysokanov, A., Gottesman, M. & Gragerov, A. (1994) Escherichia coli chaperones are associated with nascent polypeptide chains and promote the folding of 1 repressor. Mol. Microbiol., in press

    Google Scholar 

  • Georgopoulos, C. (1992) The emergence of the chaperone machines. Trends in Biochem. Sci. 17, 295–299

    Article  CAS  Google Scholar 

  • Gray, T.E. & Fersht, A.R. (1993) Refolding of barnase in the presence of GroE.J. Mol. Biol. 232, 1197–1207

    Article  CAS  Google Scholar 

  • Hartl, F.-U., Hlodan, R. & Langer, T. (1994) Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends in Biochem. Sci. 19, 20–25

    Article  CAS  Google Scholar 

  • Hartl, F.U. (1994) Protein folding: Secrets of a double-doughnut. Nature 371, 557–559.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, F.U. and Martin, J. (1995) Molecular chaperones in cellular protein folding. Curr. Op. Struct. Biol. 5, 92–102

    Article  CAS  Google Scholar 

  • Hayer-Hartl, M., Martin, J., Hartl, F.-U. (1995) The asymmetrical interaction of GroEL and GroES in the chaperonin ATPases cycle of assisted protein folding. Science 269, 836–841

    Article  PubMed  CAS  Google Scholar 

  • Hayer-Hartl, M.K., Ewbank, J.J., Creighton, T.E. & Hartl, F.U. (1994) Conformational specificity of the chaperonin GroEL for the compact folding intermediates of a-lactalbumin. EMBOJ. 13,3192–3202

    PubMed  CAS  Google Scholar 

  • Hendrick, J.P. and Hartl, F.U. (1993) Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62, 349–384

    Article  PubMed  CAS  Google Scholar 

  • Hendrick, J.P., Langer, T., Davis, T.A., Hartl, F.U. & Wiedmann, M. (1993) Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Proc. Natl. Acad. Sci. U.S.A. 90, 10216–10220

    Article  PubMed  CAS  Google Scholar 

  • Hendrix, R.W. (1979) Purification and properties of GroE, a host protein involved in bacteriophage assembly. J. Mol. Biol. 129, 375–392

    Article  PubMed  CAS  Google Scholar 

  • Hlodan, R., Pempst, P. and Hartl, F.U. (1995) Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding. Nature Struct. Biol. 2, 587–595

    Article  PubMed  CAS  Google Scholar 

  • Hohfeld, J., Minami, Y. and Hartl, F.U. (1995) Hip, a new cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Submitted

    Google Scholar 

  • Hohn T, Hohn B, Engel A, Wurtz M (1979) Isolation and characterization of the host protein groE involved in bacteriophage lambda assembly. J Mol Biol 129:359–373

    Article  PubMed  CAS  Google Scholar 

  • Horwich, A.L., Low, K.B., Fenton, W.A., Hirshfield, I.N., and Furtak, K. (1993) Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74,909–917

    Article  PubMed  CAS  Google Scholar 

  • Jackson, G.S., Staniforth, R.A., Halsall, D.J., Atkinson, T., Holbrook, J.J., Clarke, A.R. & Burston, S.G. (1993) Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: Implications for the mechanism of assisted protein folding. Biochemistry 32, 2554–2563

    Article  PubMed  CAS  Google Scholar 

  • Kang PJ, Ostermann J, Shilling J, Neupert W, Craig EA, Pfanner N (1990) Requirement of hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348:137–143

    Article  PubMed  CAS  Google Scholar 

  • Kudlicki, W., Odom, O.W., Kramer, G. & Hardesty, B. (1994) Activation and release of enzymatically inactive, full-length rhodanese that is bound to ribosomes as peptidyl-tRNA.J. Biol. Chem. 269, 16549–16553

    CAS  Google Scholar 

  • Landry, S.J., Jordan, R., McMacken, R. & Gierasch, L.M. (1992) Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature 355,455–457

    Article  PubMed  CAS  Google Scholar 

  • Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU (1992a) Successive action of molecular chaperones DnaK, DnaJ and GroEL along the pathway of assisted protein folding.Nature 356:683–689

    CAS  Google Scholar 

  • Langer T, Pfeifer G, Martin, J, Baumeister W, Hartl FU (1992b) Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBOJ. 11: 4757–4766

    PubMed  CAS  Google Scholar 

  • Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. (1991 )Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. U.S.A. 88, 2874–2878

    Article  PubMed  CAS  Google Scholar 

  • Llorca, O., Marco, S., Carrascosa, J.L. & Valpuesta, J.M. (1994) The formation of symmetrical GroEL-GroES complexes in the presence of ATP. FEBS Lett. 345, 181–186

    Article  PubMed  CAS  Google Scholar 

  • Manning-Krieg UC, Scherer PE, Schatz G (1991) Sequential action of mitochondrial chaperones in protein import into the matrix. EMBOJ 10:3273–3280

    PubMed  CAS  Google Scholar 

  • Martin J, Langer T, Boteva R, Schramel A, Horwich AL, Hartl FU (1991b) Chaperoninmediated protein folding at the surface of groEL through a ’molten globule’-like intermediate.Nature 352:36–42

    Article  PubMed  CAS  Google Scholar 

  • Martin, J., Mayhew, M. and Hartl, F.-U. (1995) Successive rounds of protein folding by GroEL without intermittent release of unfolded polypeptides into the bulk solution. Submitted

    Google Scholar 

  • Martin, J., Mayhew, M., Langer, T. & Hartl, F-U. (1993) The reaction cycle of GroEL and GroES in chaperonin-assissted protein folding. Nature 366, 228–233

    Article  PubMed  CAS  Google Scholar 

  • Mayhew, M., Da Silva, A., Erdjumerit-Bromage, H., Tempst, P. and Hartl, F.U. (1995) Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Submitted

    Google Scholar 

  • Ostermann, J., Horwich, A.L., Neupert, W. & Hartl, F.U. (1989) Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341, 125–130

    Article  PubMed  CAS  Google Scholar 

  • Palleros, D.R., Reid, K.L., Shi, L., Welch, W.J. & Fink, A.L. (1993) ATP-induced protein-HSP70 complex dissociation requires K+ but not ATP hydrolysis. Nature 365, 664–666

    Article  PubMed  CAS  Google Scholar 

  • Robinson, C.V., GroB, M., Eyles, S.J., Ewbank, J.E., Mayhew, M., Hartl, F.U., Dobson, C.M. & Radford, S. (1994) Hydrogen exchange protection in GroEL-bound a-lactalbumin detected by mass spectrometry. Submitted

    Google Scholar 

  • Saibil, H.R., Zheng, D., Roseman, A.M., Hunter, A.S., Watson, G.M.F., Chen, S., auf der Mauer, A., O’Hara, B.P., Wood, S.P., Mann, N.H., Barnett, L.K. & Ellis, RJ. (1993) ATP induces large quarternary rearrangements in a cage-like chaperonin structure.Current Biology 3, 265–273

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M., Rutkat, K., Rachel, R., Pfeifer, G., Jaenicke, R., Viitanen, P., Lorimer, G. & Buchner, J. (1994) Symmetric complexes of GroE chaperonins as part of the functional cycle. Science 265, 656–659

    Article  PubMed  CAS  Google Scholar 

  • Schroder, H., Langer, T., Hartl, F.U. & Bukau, B. (1993) DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBOJ. 12, 4137–4144

    PubMed  CAS  Google Scholar 

  • Szabo, A., Langer, T., Schroder, H., Flanagan, J., Bukau, B. & Hartl, F.U. (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system - DnaK, DnaJ and GrpE. Proc. Natl. Acad. Sci. U.S.A. 91, in press

    Google Scholar 

  • Todd, M.J., Vütanen, P.V. & Lorimer, G.H. (1993) Hydrolysis of adenosine 5-triphosphate by Escherichia coli GroEL: Effects of GroES and potassium ion. Biochemistry 32, 8560–8567

    Article  PubMed  CAS  Google Scholar 

  • Weissman, J.S., Kashi, Y., Fenton, W.A. & Horwich, A.L. (1994) GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78,693–702

    Article  PubMed  CAS  Google Scholar 

  • Ziegelhoffer, T., Lopez-Buesa, P., and Craig, E.A. (1995). The dissociation of ATP from hsp70 of Saccharomyces cerevisiae is stimulated by both Ydjlp and peptide substrates. J. Biol. Chem. 270, 10412–10419

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman SB, Trach SO (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hartl, FU. (1996). Protein Folding In The Cell: The Role Of Molecular Chaperones. In: Op den Kamp, J.A.F. (eds) Molecular Dynamics of Biomembranes. NATO ASI Series, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61126-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61126-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64707-9

  • Online ISBN: 978-3-642-61126-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics