Skip to main content

The Importance of Lipid-Protein Interactions in Signal Transduction Through the Calcium-Phospholipid Second Messenger System

  • Conference paper
Book cover Molecular Dynamics of Biomembranes

Abstract

As illustrated in Fig. 1, the binding of a hormone (H), neurotransmitter or growth factor to a receptor (R) in a membrane can activate a phosphoinositide-specific phospholipase C (PLC) that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PEP2) into the two second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 diffuses through the cytoplasm and releases calcium ions from the endoplasmic reticulum (ER). The increase in the cytoplasmic concentration of Ca++ produces translocation of protein kinase C (PKC) to the plasma membrane and concomitant activation of this enzyme. Maximal activation of PKC requires DAG, which remains in the membrane, and an acidic lipid such as phosphatidylserine (PS). The requirement for PS suggests that basic residues on the protein (+ signs) interact with acidic lipids in the membrane. The membrane-bound, activated form of PKC then phosphorylates its membrane-bound substrates, which include the myristoylated alanine-rich C kinase substrate (MARCKS) and pp60src (Src).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, G. and Delbruck, M. (1968) Reduction of dimensionality in biological diffusion processes. In: Structural Chemistry and Molecular Biology, edited by A. Rich and N. Davidson. San Francisco: W.H. Freeman and Company, p. 198–215.

    Google Scholar 

  • Aderem, A. (1992) The MARCKS brothers: a family of protein kinase C substrates. Cell 71:713–716.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M.J. (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325.

    Article  PubMed  CAS  Google Scholar 

  • Blackshear, P.J. (1993) The MARCKS family of cellular protein kinase C substrates. J. Biol. Chem. 268:1501–1504.

    PubMed  CAS  Google Scholar 

  • Buser, C.A., Sigal, C.T., Resh, M.D., and McLaughlin, S. (1994) Membrane binding of myristylated peptides corresponding to the NH2-terminus of Src. Biochemistry 33:13093–13101.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, G. (1992) Receptor tyrosine kinase substrates: src homology domains and signal transduction. FASEBJ. 6:3283–3289.

    PubMed  CAS  Google Scholar 

  • Cifuentes, M.E., Honkanen, L., and Rebecchi, M.J. (1993) Proteolytic fragments of phosphoinositide-specific phospholipase C-dj. Catalytic and membrane binding properties. J. Biol Chem. 268:11586–11593.

    PubMed  CAS  Google Scholar 

  • Cohen, G.B., Ren, R, and Baltimore, D. (1995) Modular binding domains in signal transduction proteins. Cell 80:237–248.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M.E. and McCammon, J.A. (1990) Electrostatics in biomolecular structure and dynamics. Chem. Rev. 90:509–521.

    Article  CAS  Google Scholar 

  • Ferguson, K.M., Lemmon, M.A., Schlessinger, J., and Sigler, P.B. (1994) Crystal structure at 2.2 A resolution of the pleckstrin homology domain from human dynamin. Cell 79:199–209.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, P., Gupta, R., Shah, S., Morris, A.J., Rudge, S.A., Scarlata, S., Petrova, V., McLaughlin, S., and Rebecchi, M.J. (1995) Binding of the pleckstrin homology domain of phospholipase C-6l to membrane bilayers and inositol 1,4,5-trisphosphate. Biochemistry submitted.

    Google Scholar 

  • Gibson, T.J., Hyvonen, M., Musacchio, A., Saraste, M., and Birney, E. (1994) PH domain: the first anniversary. Trends Biochem. Sci. 19:349–353.

    Article  PubMed  CAS  Google Scholar 

  • Harlan, J.E., Hajduk, P.J., Yoon, H.S., and Fesik, S.W. (1994) Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371:168–170.

    Article  PubMed  CAS  Google Scholar 

  • Harlan, J.E., Yoon, H.S., Hajduk, P.J., and Fesik, S.W. (1995) Structural characterization of the interaction between a pleckstrin homology domain and phosphatidylinositol 4,5-bisphosphate. Biochemistry 34:9859–9864.

    Article  PubMed  CAS  Google Scholar 

  • Haslam, R.J., Kolde, H.B., and Hemmings, B.A. (1993) Pleckstrin domain homology. Nature 363:309–310.

    Article  PubMed  CAS  Google Scholar 

  • Jahnig, F. (1976) Electrostatic free energy and shift of the phase transition for charged lipid membranes. Biophys. Chem. 4:309–318.

    Article  PubMed  CAS  Google Scholar 

  • Jain, M.K. and Berg, O.G. (1989) The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting. Biochim. Biophys. Acta 1002:127–156.

    PubMed  CAS  Google Scholar 

  • James, G. and Olson, E.N. (1989) Myristoylation, phosphorylation, and subcellular distribution of the 80-kDa protein kinase C substrate in BC3H1 myocytes. J. Biol. Chem. 264: 20928–20933.

    PubMed  CAS  Google Scholar 

  • James, S.R., Paterson, A., Harden, T.K., and Downes, C.P. (1995) Kinetic analysis of phospholipase Cp isoforms using phospholipid-detergent mixed micelles. Evidence for interfacial catalysis involving distinct micelle binding and catalytic steps. J. Biol. Chem. 270:11872–11881.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., Blackshear, P.J., Johnson, J.D. and McLaughlin, S. (1994a) Phosphorylation reverses the membrane association of peptides that correspond to the basic domains of MARCKS and neuromodulin. Biophys. J. 67:227–237.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., Shishodo, T., Jiang, X., Aderem, A., and McLaughlin, S. (1994b) Phosphorylation, high ionic strength, and calmodulin reverse the binding of MARCKS to phospholipid vesicles. J. Biol. Chem. 269:28214–28219.

    PubMed  CAS  Google Scholar 

  • Lee, S.B., and Rhee, S.G. (1995) Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Cur. Opin . Cell Biol. 7:183–189.

    CAS  Google Scholar 

  • Macias, M.J., Musacchio, A., Ponstingl, H., Nilges, M., Saraste, M., and Oschkinat H. (1994) Structure of the pleckstrin homology domain from beta-spectrin.Nature 369:675–677.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, S. (1989) The electrostatic properties of membranes. Annu. Rev. Biophys. Biophys. Chem. 18:113–136.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, S. and Aderem, A. (1995) The myristoyl-electrostatic switch: A modulator of reversible protein-membrane interactions. Trends Biochem. Sci. 20:272–276.

    Article  PubMed  CAS  Google Scholar 

  • Montich, G., Scarlata, S., McLaughlin, S., Lehrmann, R., and Seelig, J. (1993) Thermodynamic characterization of the association of small basic peptides with membranes containing acidic lipids. Biochim. Biophys. Acta 1146:17–24.

    Article  PubMed  CAS  Google Scholar 

  • Mosior, M. and McLaughlin, S. (1991) Peptides that mimic the pseudosubstrate region of protein kinase C bind to acidic lipids in membranes. Biophys J. 60:149–159.

    Article  PubMed  CAS  Google Scholar 

  • Newton, A.C. (1993) Interaction of proteins with lipid headgroups: lessons from protein kinase C. Annu. Rev. Biophys. Biomol. Structure 22:1–25.

    Article  CAS  Google Scholar 

  • Op denKamp, J.A. (1979) Lipid asymmetry in membranes. Annu. Rev. Biochem. 48:47–71.

    Article  CAS  Google Scholar 

  • Parker, P.J., Hemmings, B.A., and Gierschik, P. (1994) PH domains and phospholipases — a meaningful relationship?. Trends Biochem. Sci. 19:54–55.

    Article  PubMed  CAS  Google Scholar 

  • Parsegian, A. (1969) Energy of an ion crossing a low dielectric membrane; solutions to four relevant electrostatic problems. Nature 221:844–846.

    Article  PubMed  CAS  Google Scholar 

  • Pawelczyk, T., and Lowenstein, J.M. (1993) Binding of phosholipase C-Sj to phospholipid vesicles. Biochem. J. 291:693–696.

    PubMed  CAS  Google Scholar 

  • Pawson, T. (1995) Protein modules and signalling networks. Nature 373:573–580.

    Article  PubMed  CAS  Google Scholar 

  • Peitzsch, R.M., Eisenberg, M., Sharp, K.A., and McLaughlin, S. (1995) Calculations of the electrostatic potential adjacent to model phospholipid bilayers. Biophys. J. 68:729–738.

    Article  PubMed  CAS  Google Scholar 

  • Peitzsch, R.M. and McLaughlin, S. (1993) Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry 32:10436–10443.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher,J.A., Touhara,K., Payne,E.S., and Lefkowitz,R.J. (1995) Pleckstrin homology domainmediated membrane association and activation of the p-adrenergic receptor kinase requires coodinate interaction with G Py subunits and lipid. J. Biol. Chem. 270:11707–11710.

    Article  PubMed  CAS  Google Scholar 

  • Raudino, A. (1995) Lateral inhomogeneous lipid membranes: theoretical aspects. Adv. Colloid Interfac. Sci. 57:229–285.

    Article  CAS  Google Scholar 

  • Rebecchi, M.,Peterson,A., and McLaughlin, S. (1992) Phosphoinositide-specific phospholipase C-6X binds with high affinity to phospholipid vesicles containing phosphatidylinositol 4,5-bisphosphate. Biochemistry 31:12742–12747.

    Article  PubMed  CAS  Google Scholar 

  • Resh, M.D. (1993) Interaction of tyrosine kinase oncoproteins with cellular membranes. Biochim. Biophys. Acta 1155:307–322.

    PubMed  CAS  Google Scholar 

  • Rhee, S.G. and Choi, K.D. (1992) Regulation of inositol phospholipid-specific phospholipase C isozymes. J. Biol Chem. 267:12393–12396.

    PubMed  CAS  Google Scholar 

  • Rosen, A., Keenan, K.F., Thelen, M., Nairn, A.C., and Aderem, A. (1990) Activation of protein kinase C results in the displacement of its myristoylated, alanine-rich substrate from punctate structures in macrophage filopodia. J. Exp. Med. 172:1211–1215.

    Article  PubMed  CAS  Google Scholar 

  • Roux, M., Neumann, J.M., Bloom, M., and Devaux, P.F. (1988) 2H and 31P NMR study of pentalysine interaction with headgroup deuterated phosphatidylcholine and phosphatidylserine. Eur. Biophys. J. 16:267–273.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, K.A. and Honig, B.H. (1990) Electrostatic interactions in macromolecules: theory and applications. Annu. Rev. Biophys. Biophys. Chem. 19:301–332.

    Article  PubMed  CAS  Google Scholar 

  • Sigal, C.T., Zhou, W., Buser, C.A., McLaughlin, S., and Resh, M.D. (1994) The amino terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids. Proc. Natl. Acad. Sci. U.S.A. 91:12253–12257.

    Article  PubMed  CAS  Google Scholar 

  • Silvius, J.R. and l’Heureux, F. (1994) Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry 33:3014–3022.

    Article  PubMed  CAS  Google Scholar 

  • Sternweis, P.C. and Smrcka, A.V. (1992) Regulation of phospholipase C by G proteins. Trends Biochem. Sci. 17:502–506.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, R.B., Davletov, B.A., Berghuis, A.M., Sudhof, T.C., and Sprang, S.R. (1995) Structure of the first C2 domain of synaptotagmin I: A novel Ca27phospholipid-binding fold. Cell 80:929–938.

    Article  PubMed  CAS  Google Scholar 

  • Tanford, C. (1991) The Hydrophobic Effect: Formation of Micelles and Biological Membranes. Malabar, FL: Krieger Publishing Co.

    Google Scholar 

  • Taniguchi, H. and Manenti, S. (1993) Interaction of myristoylated alanine-rich protein kinase C substrate (MARCKS) with membrane phospholipids. J. Biol. Chem. 268:9960–9963.

    PubMed  CAS  Google Scholar 

  • Thelen, M., Rosen, A., Nairn, AC., and Aderem, A. (1991) Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature 351:320–322.

    Article  PubMed  CAS  Google Scholar 

  • Towler, D.A., Gordon, J.I., Adams, S.P., and Glaser, L. (1988) The biology and enzymology of eukaryotic protein acylation. Annu. Rev. Biochem. 57:69–99.

    Article  PubMed  CAS  Google Scholar 

  • Trauble, H. (1977) Membrane electrostatics. In: Structure of Biological Membranes. Edited by S. Abrahamsson and I. Pascher. New York: Plenum Press, p. 509–550.

    Google Scholar 

  • Trauble, H., Teubner, M., Woolley, P., and Eibl, H. (1976) Electrostatic interactions at charged lipid membranes. I. Effects of pH and univalent cations on membrane structure. Biophys. Chem. 4:319–342.

    Article  Google Scholar 

  • Vergeres, G., Manenti, S., and Weber, T. (1995) Interaction of MARCKS, a major protein kinase C substrate, with the membrane. In: Signalling Mechanisms: From Transcription Factors to Oxidative Stress, edited by L. Packer and K. Wirtz. NATO ASI Series. Berlin: Springer-Verlag.

    Google Scholar 

  • Wang, J. K, Walaas, S.I., Sihra, T.S., Aderem, A., and Greengard, P. (1989) Phosphorylation and associated translocation of the 87-kDa protein, a major protein kinase C substrate, in isolated nerve terminals. Proc. Natl. Acad. Sci. U.S.A. 86:2253–2256.

    Article  PubMed  CAS  Google Scholar 

  • Wedegaertner, P.B., Wilson, P.T., and Bourne, H.R. (1995) Lipid modifications of trimeric G proteins. J. Biol. Chem. 270:503–506.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L. and Glaser, M. (1995) Membrane domains containing phosphatidylserine and substrate can be important for the activation of protein kinase C. Biochemistry 34:1500–1506.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, H.S., Hajduk, P.J., Petros, A.M., Olejniczak, E.T., Meadows, R.P., and Fesik, S.W. (1994) Solution structure of a pleckstrin-homology domain. Nature 369:672–675.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, J., Knighton, D. R, Xuong, N.H., Taylor, S.S., Sowadski, J.M., and Ten Eyck, L.F. (1993) Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Protein Science 2:1559–1573.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McLaughlin, S. et al. (1996). The Importance of Lipid-Protein Interactions in Signal Transduction Through the Calcium-Phospholipid Second Messenger System. In: Op den Kamp, J.A.F. (eds) Molecular Dynamics of Biomembranes. NATO ASI Series, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61126-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61126-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64707-9

  • Online ISBN: 978-3-642-61126-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics