Molecular Cytogenetics: Uses of flow sorted chromosomes, fluorescence in situ hybridisation (FISH) and digital microscopy for the analysis of genomes

  • Nigel P. Carter
Conference paper
Part of the NATO ASI Series book series (volume 95)


The application of molecular techniques to the study of chromosome structure and rearrangements has revolutionised cytogenetics. Recombinant DNA technology and flow sorted chromosome libraries now provide us with specific probes which, coupled with in situ hybridisation techniques, allow the direct visualisation of the position of DNA sequences on metaphase chromosomes and in interphase nuclei. While these techniques allow direct gene mapping and ordering, their application to clinical samples now enables precise diagnosis of chromosomal abnormalities.


Chromosome Painting Metaphase Spread Aberrant Chromosome Chromosome Type Polymerase Chain Reaction Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arai N, Nomura D, Villaret D, et al. (1989) Complete nucleotide sequence of the chromosomal gene for human IL-4 and its expression. J Immunol 142: 274–82PubMedGoogle Scholar
  2. Bernheim A, Metezeau P, Guellaen G, Fellous M, Goldberg ME, Berger R (1983) Direct hybridization of sorted human chromosomes: localization of the Y chromosome on the flow karyotype. Proc Natl Acad Sei U S A 80: 7571–5CrossRefGoogle Scholar
  3. Carter NP (1994) Cytogenetic analysis by chromosome painting. Cytometry 18: 2–10PubMedCrossRefGoogle Scholar
  4. Carter NP, Ferguson-Smith MA, Perryman MT, et al. (1992) Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J Med Genet 29: 299–307PubMedCrossRefGoogle Scholar
  5. Collard JG, de-Boer PA, Janssen JW, Schijven JF, de-Jong B (1985) Gene mapping by chromosome spot hybridization. Cytometry 6: 179–85PubMedCrossRefGoogle Scholar
  6. Cotter F, Nasipuri S, Lam G, Young BD (1989) Gene mapping by enzymatic amplification from flow-sorted chromosomes. Genomics 5: 470–4PubMedCrossRefGoogle Scholar
  7. Cremer T, Tesin D, Hopman AH, Manuelidis L (1988) Rapid interphase and metaphase assessment of specific chromosomal changes in neuroectodermal tumor cells by in situ hybridization with chemically modified DNA probes. Exp Cell Res 176: 199–220PubMedCrossRefGoogle Scholar
  8. Dauwerse JG, Wiegant J, Raap AK, Breuning MH, van-Ommen GJ (1992) Multiple colors by fluorescence in situ hybridization using ratio-labelled DNA probes create a molecular karyotype. Hum Mol Genet 1: 593–8PubMedCrossRefGoogle Scholar
  9. Fidlerova H, Senger G, Kost M, Sanseau P, Sheer D (1994) Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet Cell Genet 65: 203–5PubMedCrossRefGoogle Scholar
  10. Gray JW, Langlois RG, Carrano AV, Burkhart-Schultz K, Van Dilla MA (1979) High resolution chromosome analysis: one and two parameter flow cytometry. Chromosoma 73: 9–27CrossRefGoogle Scholar
  11. Griffin DK, Wilton LJ, Handyside AH, Atkinson GH, Winston RM, Delhanty JD (1993) Diagnosis of sex in preimplantation embryos by fluorescent in situ hybridisation. Bmj 306: 1382PubMedCrossRefGoogle Scholar
  12. Harris RM, Carter NP, Griffiths B, Goudie D, Hampson RM, Yates JR, Affara NA, Ferguson-Smith MA (1993) Physical mapping within the tuberous sclerosis linkage group in region 9q32-q34. Genomics 15: 265–74PubMedCrossRefGoogle Scholar
  13. Hulten MA, Gould CP, Goldman AS, Waters JJ (1991) Chromosome in situ suppression hybridisation in clinical cytogenetics. J Med Genet 28: 577–82PubMedCrossRefGoogle Scholar
  14. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–21PubMedCrossRefGoogle Scholar
  15. Lebo RV, Bruce BD (1987) Gene mapping with sorted chromosomes.Methods Enzymol 151: 292–313PubMedCrossRefGoogle Scholar
  16. Lebo RV, Gorin F, Fletterick RJ, Kao FT, Cheung MC, Bruce BD, Kan YW (1984) High-resolution chromosome sorting and DNA spot-blot analysis assign McArdle’s syndrome to chromosome 11. Science 225: 57–9CrossRefGoogle Scholar
  17. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80: 224–34PubMedCrossRefGoogle Scholar
  18. Neckelmann N, Warner CK, Chung A, et al. (1989) The human ATP synthase beta subunit gene: sequence analysis, chromosome assignment, and differential expression. Genomics 5: 829–43PubMedCrossRefGoogle Scholar
  19. Nederlof PM, Robinson D, Abuknesha R, Wiegant J, Hopman AH, Tanke HJ, Raap AK (1989) Three-color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry 10: 20–7PubMedCrossRefGoogle Scholar
  20. Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sei U S A 85: 9138–42CrossRefGoogle Scholar
  21. Scherthan H, Cremer T, Arnason U, Weier HU, Lima-de-Faria A, Fronicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat Genet 6: 342–7PubMedCrossRefGoogle Scholar
  22. Schmitz A, Olschwang S, Chaput B, Thomas G, Frelat G (1989) Oncogene detection by enzymatic amplification on flow sorted chromosomes. Nucleic Acids Res 17: 816PubMedCrossRefGoogle Scholar
  23. Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A (1992a) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13: 718–25PubMedCrossRefGoogle Scholar
  24. Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenskjold M, Pfragner R, Ponder BA (1992b) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosom Cancer 4: 257–63PubMedCrossRefGoogle Scholar
  25. Trask B, Pinkel D (1990) Fluorescence in situ hybridization with DNA probes. Methods Cell Biol 33: 383–400PubMedCrossRefGoogle Scholar
  26. Trask B, Pinkel D, van-den-Engh G (1989) The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics 5: 710–7PubMedCrossRefGoogle Scholar
  27. Whitcombe DM, Carter NP, Albertson DG, Smith SJ, Rhodes DA, Cox TM (1991) Assignment of the human ferrochelatase gene (FECH) and a locus for protoporphyria to chromosome 18q22. Genomics 11: 1152–4PubMedCrossRefGoogle Scholar
  28. Wiegant J, Kalle W, Mullenders L, Brookes S, Hoovers JM, Dauwerse JG, van-Ommen GJ, Raap AK (1992) High-resolution in situ hybridization using DNA halo preparations. Hum Mol Genet 1: 587–91PubMedCrossRefGoogle Scholar
  29. Zheng YL, Carter NP, Price CM, Colman SM, Milton PJ, Hackett GA, Greaves MF, Ferguson-Smith MA (1993) Prenatal diagnosis from maternal blood: simultaneous immunophenotyping and FISH of fetal nucleated erythrocytes isolated by negative magnetic cell sorting. J Med Genet 30: 1051–6PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Nigel P. Carter
    • 1
  1. 1.The Sanger Centre, Hinxton HallHinxton, CambridgeUK

Personalised recommendations