Tree-Ring Density Networks for Climate Reconstruction

  • Fritz H. Schweingruber
  • Keith R. Briffa
Part of the NATO ASI Series book series (volume 41)

Abstract

Conifers from regions with cool-moist summers (all mountains and the boreal conifer belt) are a suitable source of material for building a radiodensitometric tree-ring network in the northern hemisphere north of 40° latitude. Intra-annual densities from rings as small as 30 microns can be analysed using recently improved densitometric techniques. Networks of living conifers provide densitometric data that can be calibrated against instrumental temperatures and rigorous statistical comparisons clearly demonstrate that these data can be used to represent spatial patterns of temperature variability on annual and decadal timescales over, at least, the last 400 years. Continuous multimillennial chronologies of densitometric data are currently under construction in areas such as the Alps, northern Fennoscandia and Siberia (both the Yamal and Taimyr Peninsulas). Large numbers of logs and stumps that could provide material for the construction of many further high-quality multimillennial chronologies are known to exist in river sediments and lakes in the permafrost zone of northern Russia. Subfossil spruce in the boreal zone of northern North America are apparently rare. Relatively little densitometry has been undertaken in the southern hemisphere and what limited results have been produced seem to indicate that densitometric data offer little additional information, at least as regards temperature sensitivity, above that provided by more commonly analysed tree-ring width data.

Keywords

Depression Europe Expense Autocorrelation Holocene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archambault S, Bérgeron Y (1993) Discovery of a living 900 year old northern White Cedar ( Thuja occidentalis), in Northwestern Québec. The Canadian Field-Naturalist 106: 192–195Google Scholar
  2. Bartholin TS, Karlén W (1983) Dendrokonologie i Lapland. Dendrokonologiska Sällskapel, Meddelanden 5: 1–6Google Scholar
  3. Becker B (1993) An 11,000-year German oak and pine chronology for radiocarbon calibration. Radiocarbon 35: 201–213Google Scholar
  4. Bégin Y, Arsenault S, Lavoie J (1989) Dynamique d’une bordure forestière par suite de la hausse récente du niveau marin, rive sud-ouest du Golfe du Saint-Laurent, Nouveau-Brun s wick. Géographie Physique et Quaternaire 43: 355–366Google Scholar
  5. Bircher W (1982) Zur Gletscher- und Klimageschichte des Saastales. Glacialmorphologische und klimatologische Untersuchungen. Physische Geographie. Univ. Zürich 9: 233 ppGoogle Scholar
  6. Bräker OU (1981) Der alterstrend bei jahrringdichten und jahrringbreiten von nadelhölzern un sein ausgleich. Mitt. Forstl. Budes-Vers.-Anst. 142: 75–102Google Scholar
  7. Boninsegna JA (1988) Santiago de Chile winter rainfall since 1220 as being reconstructed by tree rings. Quaternary of South America and Antarctic Peninsula 6: 67–87Google Scholar
  8. Boninsegna JA (1992) South American dendroclimatological records. In Climate Since A.D. 1500, editors RS Bradley and PD Jones. Routledge, London: 446–462Google Scholar
  9. Bräuning A (1994) Dendrochronology in the last 1400 years in Eastern Tibet. Geo Journal 34: 75–95Google Scholar
  10. Briffa KR, Jones PD, Schweingruber FH (1988) Summer temperature patterns over Europe: a reconstruction from 1750 A.D. based on maximum latewood density indices of conifers. Quaternary Research 30: 36–52CrossRefGoogle Scholar
  11. Briffa KR, Jones PD, Schweingruber FH (1992a) Tree-ring density reconstructions of summer temperature patterns across western north America since 1600. J Clim 5: 735–754CrossRefGoogle Scholar
  12. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlen W, Zetterberg P, Eronen M (1992b) Fennoscandian summers from A.D. 500: temperature changes on short and long timescales. Climate Dynamics 7: 111–119CrossRefGoogle Scholar
  13. Briffa KR (1994) Mid and late Holocene climate change: evidence from tree growth in northern Fennoscandia. In Palaeoclimate of the Last Glacial/Interglacial Cycle, edited by BM Funnell and RLF Kay. Special Publication 94/2 NERC Earth Science Directorate, Swindon, U.K.: 61–65Google Scholar
  14. Briffa KR (1994) Mid and late Holocene climate change: evidence from tree growth in northern Fennoscandia. In Palaeoclimate of the Last Glacial/Interglacial Cycle, edited by BM Funnell and RLF Kay. Special Publication 94/2 NERC Earth Science Directorate, Swindon, U.K.: 61–65Google Scholar
  15. Briffa KR, Jones PD, Schweingruber FH, Shiyatov SG, Vaganov EA (1995a) Development of a north Eurasian chronology network: Rationale and preliminary results of comparative ring-width and densitometric analyses in northern Russia. Radiocarbon (in press) Google Scholar
  16. Briffa KR, Jones PD, Schweingruber FH, Shiyatov SG, Cook ER (1995b) Unusual twentieth-century warmth in a 1,000-year temperature record from Siberia. Nature 376: 156–159CrossRefGoogle Scholar
  17. Brubaker LB (1982) Western North America. In Climate from Tree Rings, edited by MK Hughes, PM Kelly, JR Pilcher and VC LaMarche Jr. Cambridge University Press: 118–126Google Scholar
  18. Cleaveland MK (1983) X-ray Densitometric Measurement of Climate Influence on the Intra-Annual Characteristics of Southwestern Semiarid Conifer Tree Rings. Unpublished PhD Dissertation, The University of Arizona, Tucson, ArizonaGoogle Scholar
  19. Cleaveland MK (1986) Climatic response of densitometric properties in semiarid site tree rings. Tree-Ring Bulletin 46: 13–29Google Scholar
  20. Conkey LE (1986) Red spruce tree ring widths and densities in eastern North America as indicators of past climate. Quaternary Research 26: 232–243CrossRefGoogle Scholar
  21. Cook E, Bird T, Peterson M, Barbetti M, Buckley B, D’Arrigo R, Francey R, Tans (1991) Climatic change in Tasmania inferred from a 1089-year tree-ring chronology of Huon pine. Science 253: 1266–1268Google Scholar
  22. Cook ER, Bird T, Peterson M, Barbetti M, Buckley B, D’Arrigo R, Francey R (1992) Climatic change over the last millennium in Tasmania reconstructed from tree rings. The Holocene 2: 205–217CrossRefGoogle Scholar
  23. Cook, ER, Briffa KR, Meko DM, Graybill DA, Funkhauser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. The Holocene 5: 229–237CrossRefGoogle Scholar
  24. D’Arrigo RD, Jacoby GC (1992) Dendroclimatic evidence from northern North America. In Climate Since A.D. 1500, edited by RS Bradley and PD Jones. Routledge, London: 296–311Google Scholar
  25. D’Arrigo R, Jacoby GC, Free RM (1992) Tree-ring width and maximum latewood density at the North American treeline: parameters of climate change. Canadian Journal Forest Research 22: 1290–1296CrossRefGoogle Scholar
  26. Edouard JL, Tessier L, Thomas A (1992) Holocene palaeoenvironment in the French Alps: dendrochronological approach. In Tree Rings and Environment, edited by TS Bartholin, BE Berglund, D Eckstein and FH Schweingruber. Lundqua Report. Proc. of the Int. Dendrochronological Symposium, Ystad, South Sweden, 3–9 September 1990: 90–93Google Scholar
  27. Eronen M, Zetterberg P (1992) Dendrochronology and climate history in the subarctic area of Fennoscandia. In The Finnish Research Programme on Climate Change, edited by M Kanninen and P Anttila. Progress Rep., Acad, of Finland, Helsinki: 13–18Google Scholar
  28. Eronen M, Zetterberg P (1992) Dendrochronology and climate history in the subarctic area of Fennoscandia. In The Finnish Research Programme on Climate Change, edited by M Kanninen and P Anttila. Progress Rep., Acad, of Finland, Helsinki: 13–18Google Scholar
  29. Eschbach W, Nogler P, Schar E, Schweingruber FH (1995) Technical advances in radiodensitometrical determination of wood density. Holzforschung (in press) Google Scholar
  30. Esper J (1994) Versuch einer Klimarekonstruktion mit Hilfe der Dendrochronologie am Beispiel des Hunza-Tales im Karakorum. Diplomarbeit, Univ. of Bonn. Inst, of Geography: 128 ppGoogle Scholar
  31. Filion L, Payette S, Gauthier L (1985) Analyse dendroclimatique d’un Kummholz é la limite des arbres, Lac Bush, Québec nordique. Geogr. Physique et Quaternaire 29: 221–226Google Scholar
  32. Fritts, HC (1976) Tree Rings and Climate, Academic press, New YorkGoogle Scholar
  33. Fritts HC, Shatz DJ (1975) Selecting and characterising tree-ring chronologies for dendroclimatic analysis. Tree-Ring Bulletin 35: 31–40Google Scholar
  34. Giddings JL (1941) Dendrochronology in northern Alaska. Univ. of Arizona Bull. 12: 40–48Google Scholar
  35. Graybill DA, Shiyatov SG (1992) Dendroclimatic evidence from the northern Soviet Union. In Climate Since A.D. 1500, edited by RS Bradley and PD Jones. Routledge, London:393–414Google Scholar
  36. Holzhauser HP (1987) Betrachtungen zur Gletschergeschichte. Geogr. helv. 42: 80–91Google Scholar
  37. Hüsken W (1993) Dendrochronologische und ökologische Studien an Nadelhölzern im Gebiet der Pragser Dolomiten (Südtirol/Italien). Dissertation. Heinrich-Heine-Universität Düsseldorf. 184SGoogle Scholar
  38. Jacoby GC, D’Arrigo R (1989) Reconstructed Northern Hemisphere annual temperatures since 1671 based on high latitude tree-ring data for North America. Climate Change 14: 39–59CrossRefGoogle Scholar
  39. Jacoby GC, D’Arrigo R (1989) Reconstructed Northern Hemisphere annual temperatures since 1671 based on high latitude tree-ring data for North America. Climate Change 14: 39–59CrossRefGoogle Scholar
  40. Kaiser KF (1992) Beiträge zur Klimageschichte vom späten Hochglazial bis ins frühe Holozän, rekonstruiert mit Jahrringen und Holluskenschalen aus verschiedenen Vereisungsgebieten. Habilitationsschrift, Univ. Zürich: 144 ppGoogle Scholar
  41. Kelly PE, Cook ER, Larson DW (1994) A 1397 year tree-ring chronology of Thuja occidentalis from cliff faces of the Niagara Escarpment, southern Ontario, Canada. Can. J. For. Res. 24: 1049–1057CrossRefGoogle Scholar
  42. Kienast F (1985) Dendroökologische Untersuchungen an Höhenprofilen aus verschiedenen Klimabereichen. Diss. Univ. Zürich: 129 ppGoogle Scholar
  43. Kuniholm PI (1991) A 1503-year chronology for the bronze and iron ages: 1990–1991 Progress Report of the Aegean Dendrochronology Project VII. Arkeometri Sonuçlari Toplantisi, 27–31 Mayis 91, Canakkale: 121–130Google Scholar
  44. Lamprecht AM (1984) Dendroklimatologische Untersuchungen in Südamerika. Bericht 263. Eidg. Anst. für das forstl. Vers. wes. Birmensdorf. 79 ppGoogle Scholar
  45. Lara A, Villalba R (1993) A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science 260: 1104–1106CrossRefGoogle Scholar
  46. Lenz O, Nogler P, Bräker OU (1986) L’évolution du temps et le dépérissement du Sapin blanc dans la region de Berne. Eigenöss. Anst forstl. Versuchswes. Ber. 303: 44 ppGoogle Scholar
  47. Lingg W (1986) Dendrökologische Studie an Nadelbäumen im alpinen Trockental Wallis (Schweiz). Eidg. Anstalt forst. Versuchswesen. Ber. 287: 81 ppGoogle Scholar
  48. Luckman BH (1992) Glacier and dendrochronological records for the Little Ice Age in the Canadian Rocky Mountains. Proc. Int. Symp. on Little Ice Age Climate. Tokyo Metropolitan University: 75–80Google Scholar
  49. Norton DA, Palmer JG (1992) Dendroclimatic evidence from Australasia. In Climate Since A.D. 1500, editors R.S. Bradley and P.D. Jones. Routledge, London: 463–482Google Scholar
  50. Renner F (1982) Beiträge zur Gletschergeschichte des Gotthardgebietes und dendroklimatologische Analysen an fossilen Hölzern. Physische Geographie, Univ. Zürich 8: 182 ppGoogle Scholar
  51. Röthlisberger F (1976) Gletscher und Klimaschwankungen im Raum Zermatt. Ferpéche und Arolla. In 8000 Jahre Walliser Gletschergeschichte, edited by W Schneebeli and F Röthlisberger. Verlag Schweinz. Alpen-Club, Bern. 52: 59–152Google Scholar
  52. Röthlisberger F (1986) 10,000 Jahre Gletschergeschichte der Erde. Sauerländer, Aarau, Frankfurt am Main, Salzburg. 416 ppGoogle Scholar
  53. Schär E, Schweingruber FH (1987) Nacheiszeitliche Stammfunde aus Grächen im Wallis. Schweiz Z. forst. Versuchswesen 138: 497–515 Schulman E ( 1956 ) Dendroclimatic Changes in Semi Arid America. University of Arizona Press, Tucson, 142 ppGoogle Scholar
  54. Schulman E (1956) Dendroclimatic Changes in Semi Arid America. University of Arizona Press, Tucson, 142ppGoogle Scholar
  55. Schweingruber FH, Schär E, Bräker OU (1984) Jahrringe aus sieben Jahrhunderten. Saaner Jahrbuch 1984: 1–30Google Scholar
  56. Schweingruber FH, Bartholin TS, Schär E, Briffa KR (1988) Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps ( Switzerland ). Boreas 17: 559–566Google Scholar
  57. Schweingruber FH, Briffa KR, Jones PD (1991) Yearly maps of summer temperatures in Western Europe from A.D. 1750 to 1975 and western north America from 1600 to 1982. Vegetatio 92: 5–71Google Scholar
  58. Schweingruber FH (1992) Dendrochronological sampling strategies for radiodensitometric networks in northern hemisphere Subalpine and Boreal zones. In Oscillations of the Alpine and Polar Tree Limits in the Holocene, edited by B Frenzel. European Palaeoclimate and Man 4: 206–209Google Scholar
  59. Schweingruber FH (1993a) Trees and Wood in Dendrochronology. Springer-Verlag, Berlin: 402 ppGoogle Scholar
  60. Schweingruber FH (1993b) Jahrringe und Umwelt: Dendroökologie. Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL, 474ppGoogle Scholar
  61. Schweingruber FH, Briffa KR, Nogler P (1993) A tree-ring densitometric transect from Alaska to Labrador: comparison of ring-width and maximum-latewood-density chronologies in the conifer belt of northern North America. International Journal of Biometeorology 37: 151–169CrossRefGoogle Scholar
  62. Schweingruber FH, Naurzbaev MM, Briffa KR, Loosli HH (1995) The dendroclimatological potential of Holocene wood from the polar tree limit in Taimyr, Russia (submitted to Journal of IAWA)Google Scholar
  63. Serre-Bachet F (1985) La dendrochronologie dans le bassin méditerranéen. Dendrochronologia 3: 77–92Google Scholar
  64. Shiyatov S G (1980) Dating of wooden buildings of Mangazeia by the dendrochronological method. In Mangazeia. Mangazeia sea way Part 1, edited by MIO Belov, V Orjannikov and VF Starkov. Gidrometeoizdat, Leningrad: 93–107Google Scholar
  65. Shiyatov SG, Hantemirov RM, Schweingruber FH, Loosli HH (1995b) The potential for developing long-term tree-ring chronologies on the northwestern Siberian plain Stahle DW, Cleaveland MK, Hehr JG (1988) North Carolina climate changes reconstructed from tree rings: A.D. 372-1985. Science 240: 1517–1519Google Scholar
  66. Stockton CW, Meko DM (1983) Drought recurrence in the Great Plains as reconstructed from long-term tree-ring records. Journal of Climate and Applied Meteorology 22: 17–29CrossRefGoogle Scholar
  67. Villalba R (1990) Climatic fluctuations in northern Patagonia during the last 1000 years as inferred from tree-ring records. Quaternary Research 34: 346–360CrossRefGoogle Scholar
  68. Worbes M (1994) Grundlagen und Anwendungen der Jahresringforschung in den Tropen. Habilitationsschrift, Fachbereich Biologie, Universität Hamburg: 211 ppGoogle Scholar
  69. Wu Xiangding D (1992) Dendroclimatic studies in China. In Climate Since A.D. 1500, edited by R.S. Bradley and P.D. Jones. Routledge, London and New York: 432–445Google Scholar
  70. Yadav RR, Bhattacharyya A (1992) A 745-year chronology of Cedrus deodara from western Himalaya, India. Dendrochronologia 10: 53–61Google Scholar
  71. Z’Graggen S ( 1991 ) Dendrohistometrische-klimatologische Untersuchungen an Buchen (Fagus sylvatica L.). Diss. Univ. Basel.: 162 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Fritz H. Schweingruber
    • 1
  • Keith R. Briffa
    • 2
  1. 1.Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
  2. 2.Climatic Research Unit School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations