Skip to main content

The global carbon cycle and the atmospheric record: “The problem definition”

  • Conference paper

Part of the book series: NATO ASI Series ((ASII,volume 40))

Abstract

The abundance of C02 in the atmosphere has increased from ~315 ppmv in 1958 to ~350 ppmv in the 1990s. The increase in the decade of the 1980s is ~55% of the C02 release from fossil fuel combustion, estimated at 5.5 Pg C yr-1, or ~40% of the total anthropogenic source, from fossil fuel combustion plus land use modification (estimated at 1.6 Pg C yr-1). Thus, mass balance requires the removal of ~60% of the anthropogenic C02 by the surface. The partitioning of the C02 sink between the ocean and land is a subject of intense debate and research. As the residence time of C02 in the terrestrial biosphere is much shorter than that in the ocean, C02 sequestered now in the terrestrial biosphere may be returned to the atmosphere in the next 50-100 years to accelerate greenhouse warming (see Woodwell 1995). Therefore, understanding the mechanisms responsible for the C02 uptake is crucial for projections of future C02 levels in the atmosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dai AG, Fung IY (1993) Can climate variability contribute to the “missing” C02 sink? Global Biogeochemical Cycles 7: 525–535.

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263: 185–190.

    Article  CAS  Google Scholar 

  • Enting IG, Mansbridge JV (1986) The incompatibility of ice-core C02 data with reconstructions of biotic C02 sources. Tellus B 39: 318–325.

    Google Scholar 

  • Enting IG, Mansbridge JV (1991) Latitudinal distribution of sources and sinks of C02: results from an inversion study. Tellus B 43: 156–170.

    Article  Google Scholar 

  • Enting IG (1992) The incompatibility of ice-core C02 data with reconstruction of biotic C02 sources II. The influence of C02 fertilized growth. Tellus B 44: 23–32.

    Article  Google Scholar 

  • Friedlingstein P, Fung I, Holland E, John J, Brasseur G, Erickson D, Schimel D (1995) On the contribution of the biospheric C02 fertilisation to the missing sink. Global Biogeochemical Cycles, (In press).

    Google Scholar 

  • Fung I (1993) Models of oceanic and terrestrial sinks of anthropogenic C02: A review of the contemporary carbon cycle. In: Oremland RS (ed) The Biogeochemistry of Global Change: Radiative Trace Gases, Chapman and Hall, New York, USA, pp 169–189.

    Google Scholar 

  • Fung I (1995) Perturbations to the biospheric carbon cycle: uncertainties in the estimates. In: Woodwell GM, Mackenzie FT (eds) Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming? Oxford University Press, Oxford, pp 367–374.

    Google Scholar 

  • Houghton RA (1991) Tropical deforestation and atmospheric carbon dioxide. Climatic Change 19: 99–118.

    Article  CAS  Google Scholar 

  • Houghton RA (1994) The worldwide extent of land-use change. Bioscience 44: 305–313.

    Article  Google Scholar 

  • Kauppi PE, Mielikainen K, Kuusela K (1992) Biomass and carbon budget of European forests, 1971-1990. Science 256: 70–74.

    Article  CAS  Google Scholar 

  • Keeling CD, Piper SC, Heimann M (1989) A three dimensional model of atmospheric C02 transport based on observed winds: 4. mean annual gradients and interannual variations. In: Peterson DH (ed) Aspects of climate variability in the Pacific and the Western Americas, American Geophysical Union, Washington DC, pp 305–363.

    Chapter  Google Scholar 

  • Kurz WA, Apps MJ, Beukema SJ, Lekstrum T (1995) Twentieth century carbon budget of Canadian forests. Tellus B 47: 170–177.

    Article  Google Scholar 

  • Kurz WA and Apps MJ (1995) Retrospective assessment of carbon flows in Canadian boreal forests. (Chapter 14, this volume).

    Google Scholar 

  • Maier-Reimer E, Hasselmann K (1987) Transport and storage of C02 in the ocean—an inorganic ocean-circulation cycle model. Climate Dynamics 2: 63–90.

    Article  Google Scholar 

  • Maier-Reimer E (1993) The biological pump in the greenhouse. Global and Planetary Change 8: 13–15.

    Article  Google Scholar 

  • Marland G (1989) Fossil fuel C02 emissions. In: CDIAC Communications, Winter 1989, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, pp 1–3.

    Google Scholar 

  • Marland G, Andres RJ, Boden TA (1994) Global, regional, and national C02 emissions. In: Boden TA, Kaiser DP, Sepanski RJ, Stoss FW (eds) Trends ‘93: A Compendium of Data on Global Change, ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, pp 505–584.

    Google Scholar 

  • Post WM, Mann LK (1990) Changes in soil organic carbon and nitrogen as a result of cultivation. In: Bouwman AF (ed) Soils and the Greenhouse Effect, Wiley, New York, pp 401–407.

    Google Scholar 

  • Rastetter EB, Ryan MG, Shaver GR, Melillo JM, Nadelhofer KJ, Hobbie JE, Aber JD (1991) A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in C02, climate, and N deposition. Tree Physiology 9: 101–126.

    CAS  Google Scholar 

  • Rastetter EB, McKane RB, Shaver GR, Melillo JM (1992) Changes in C storage by terrestrial ecosystems: how C-N interactions restrict responses to C02 and temperature. Water, Air and Soil Pollution 64: 327–344.

    Article  CAS  Google Scholar 

  • Sarmiento JL, Orr JC, Siegenthaler U (1992) A perturbation simulation of C02 uptake in an ocean general circulation model. J. Geophys. Res. 97: 3621–3645.

    Article  CAS  Google Scholar 

  • Schlesinger W (1986) Changes in soil carbon storage and associated properties with disturbance and recovery. In: Trabalka JR., Reichle DE (eds) The Changing Carbon Cycle: A Global Analysis, Springer-Verlag, New York, pp 194–220.

    Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365: 119–125.

    Article  CAS  Google Scholar 

  • Stocks BJ, Lee BS, Martell DL (1995) Some potential carbon budget implications of fire management in the boreal forest. (Chapter 8, this volume).

    Google Scholar 

  • Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric C02 budget. Science 247: 1431–1438.

    Article  CAS  Google Scholar 

  • Tans PP, Berry, JA, Keeling RF (1993) Oceanic,13C/,12C observations: A new window on ocean C02 uptake. Global Biogeochemical Cycles 7: 353–368.

    Article  CAS  Google Scholar 

  • Tans PP, Fung IY, Enting IG (1995) Storage versus flux budgets: The terrestrial uptake of C02 during the 1980’s. In Woodwell GM, Mackenzie FT (eds) Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming? Oxford University Press, Oxford, pp 351–366.

    Google Scholar 

  • Townsend AR, Rastetter EB (1995) Nutrient constraints on carbon storage in forested ecosystems. (Chapter 3, this volume).

    Google Scholar 

  • Vitousek PM, Fahey T, Johnson D, Swift M (1988) Element interactions in forest ecosystems: succession, allometry and input-output budgets. Bio geochemistry 5: 7–34.

    CAS  Google Scholar 

  • Volney WJA (1995) Global change and the management of insects in forest ecosystems. (Chapter 7, this volume).

    Google Scholar 

  • Wofsey SC, Goulden ML, Munger JE, Fan S-M, Bakwin PS, Bassow SL, Bazzaz FA (1993) Net exchange of C02 in a mid-latitude forest. Science 260: 1314–1317.

    Article  Google Scholar 

  • Woodwell GM (1995) Biotic feedbacks from the warming of the Earth. In: Woodwell GM, Mackenzie FT (eds) Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming? Oxford University Press, Oxford, pp 3–21.

    Google Scholar 

  • Zoltai SC, Martikainen PJ (1995) Estimated extent of forested peatlands and their role in the global carbon cycle. (Chapter 4, this volume).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fung, I. (1996). The global carbon cycle and the atmospheric record: “The problem definition”. In: Apps, M.J., Price, D.T. (eds) Forest Ecosystems, Forest Management and the Global Carbon Cycle. NATO ASI Series, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61111-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61111-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64699-7

  • Online ISBN: 978-3-642-61111-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics