Advertisement

Genetic Predisposition in Occupational Toxicology

  • Hermann M. Bolt
Part of the Archives of Toxicology book series (TOXICOLOGY, volume 18)

Abstract

We are now witnessing the rise of a new era of research in toxicology which Zbinden has called the “era of individual expression” (Zbinden, 1992). It has been recognized that inherited genetic differences determine the susceptibility of an individual to a toxic chemical. Most of the specific factors described so far refer to the metabolism of xenobitocs which is critical for the balance of toxification and detoxification.

Keywords

Bladder Cancer Aromatic Amine Urothelial Cancer Slow Acetylators Human Bladder Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal DP, Goedde HW (1992) Pharmacogenetics of alcohol metabolism and alcoholism. Pharmacogenetics 2: 48–62PubMedCrossRefGoogle Scholar
  2. Bell DA (1994) Ethnic variation in xenobiotic metabolism and increased risk for carcinogen-induced bladder cancer. ISSX Proceedings 6: 51Google Scholar
  3. Bogaards JJP, van Immen B, van Bladeren PJ (1993) Interindividual differences in the in vitro conjugation of methylene chloride with glutathione S-transferase in 22 human liver samples. Biochem Pharmacol 45: 2166–2169PubMedCrossRefGoogle Scholar
  4. Bogaards JJP, van Immen B, van Bladeren PJ (1993) Interindividual differences in the in vitro conjugation of methylene chloride with glutathione S-transferase in 22 human liver samples. Biochem Pharmacol 45: 2166–2169PubMedCrossRefGoogle Scholar
  5. Bolt HM, Gansewendt, B (1994) Mechanism of carcinogenicity of methyl halides. CRC Crit Rev Toxicol 23: 237–253CrossRefGoogle Scholar
  6. Brian WR, Sari MA, Iwasaki M (1990) Catalytic activities of human liver cytochrome P-450 IIIA4 expressed in Saccaromyces cerevisiae. Biochemistry 29: 11280–11292PubMedCrossRefGoogle Scholar
  7. Butler MA, Lang NP, Young IF et al. (1992) Determination of CYP1A2 and N- acetyltransferase 2 phenotypes in human population by analysis of caffeine urinary metabolites. Pharmacogenetics 2: 116–127PubMedCrossRefGoogle Scholar
  8. Caporaso N, Landi MT, Vineis P (1991) Relevance of metabolic polymorphisms to human carcinogenesis; evaluation of epidemiologic evidence. Pharmacogenetics 1: 4–19PubMedCrossRefGoogle Scholar
  9. Caporaso N, De Baum MR, Rothman N (1995) Lung cancer and CYP 2D6 (the debrisoquine polymorphism): sources of heterogenicity in the proposed association. Pharmacogenetics 5, Suppl.: S129–S134PubMedCrossRefGoogle Scholar
  10. Dahl ML, Bertilsson L (1993) Genetically variable metabolism of antidepressants and neuroleptic drugs in man. Pharmacogenetics 3: 61–70PubMedCrossRefGoogle Scholar
  11. Deguchi T, Mashimo M, Suzuki T (1990) Correlation between acetylator phenotypes and genotypes of polymorphic arylamine N-acetyltransferase in human liver. J Biol Chem 265: 12757–12760PubMedGoogle Scholar
  12. Deutsche Forschungsgemeinschaft (1994) Maximum concentrations at the workplace and biological tolerance values for working materials. VCH Publ., WeinheimGoogle Scholar
  13. Deutsche Forschungsgemeinschaft (1993) Biologische Arbeitsstoff-Toleranzwerte (BAT- Werte). Arbeitsmedizinisch-Toxikologische Begriindungen. 7. Lfg., Henschler D, Lehnert G (eds). VCH Verl.Ges., WeinheimGoogle Scholar
  14. Grant DM (1993) Molecular genetics of aromatic amines. Pharmacogenetics 3: 45–50PubMedCrossRefGoogle Scholar
  15. Goldzieher JW, Dozier TS, de la Pena A (1980) Plasma levels and pharmacokinetics of ethynyl estrogens in various populations. Contraception 21: 1–15PubMedCrossRefGoogle Scholar
  16. Hanke J, Kajewska A (1990) Acetylation phenotype and bladder cancer. J Occup Med 32: 917–918PubMedCrossRefGoogle Scholar
  17. Hayes RB, Rothman N, Broly F et al. (1993) N-Acetylation phenotype and risk of bladder cancer in benzidine-exposed workers. Carcinogenesis 14: 675–678PubMedCrossRefGoogle Scholar
  18. Idle JR, Armstrong M, Boddy AV et al. (1992) The pharmacogenetics of chemical carcinogenesis. Pharmacogenetics 2: 246–258PubMedCrossRefGoogle Scholar
  19. Kalow W, Staron N (1957) On the distribution and inheritance of a typical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can J Biochem 35: 1305PubMedCrossRefGoogle Scholar
  20. Kalow W, Staron N (1957) On the distribution and inheritance of a typical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can J Biochem 35: 1305PubMedCrossRefGoogle Scholar
  21. Kerlau V, Dreano Y, Bercovici JP (1992) Nature of cytochromes P-450 involved in the 2/4-hydroxylations of estradiol in human liver microsomes. Biochem Pharmacol 44: 1745–1756CrossRefGoogle Scholar
  22. Laib RJ, Tucholski M, Filser JG, Csanady GA (1992) Pharmacokinetic interaction between 1,3-butadiene and styrene in Sprague-Dawley rats. Arch Toxicol 66: 310–314PubMedCrossRefGoogle Scholar
  23. Lewalter J, Miksche LW (1991) Empfehlungen zur arbeitsmedizinischen Prevention expositions- und dispositionsbedingter Arbeitsstoff-Beanspruchungen. Verh Dt Ges Arbeitsmed 31: 135–139Google Scholar
  24. Löhr GW (1970) Uber die Bedeutung genetisch bedingter Enzymdefekte fur die Pharmakotherapie. In: Lohr GW, Blum KU, Wiedemann OJ (eds) Enzyme und Pharmaka. Editiones “Roche”, Grenzach, pp 79–101Google Scholar
  25. Nebert DW, Adesnik M, Coon MJ, et al. (1987) The P-450 gene superfamily: recommended nomenclature. DNA 6: 1–11PubMedCrossRefGoogle Scholar
  26. Rancy JL, Kraner JC, Lasker JM (1993). Bioactivation of halogenated hydrocarbons by cytochrome P-450E1. CRC Crit Rev Toxicol 23: 1–20CrossRefGoogle Scholar
  27. Rancy JL, Kraner JC, Lasker JM (1993). Bioactivation of halogenated hydrocarbons by cytochrome P-450E1. CRC Crit Rev Toxicol 23: 1–20CrossRefGoogle Scholar
  28. Sugimura H, Hamada GS, Suzuki J, Iwase T, Kiyokawa E, Kini J, Tsugane S (1995) CYP1A1 and CYP2E1 polymorphism and lung cancer, case-control study in Rio de Janeiro, Brasil. Pharmacogenetics 5, Suppl.: S145–S148PubMedCrossRefGoogle Scholar
  29. Vesell ES (1975) Pharmacogenetics. Biochem Pharmacol 24: 445–450CrossRefGoogle Scholar
  30. Weber WW, Hein DW, Litwin A, Lower GM (1983) Relationship of acetylator status to isonioazid toxicity, lupus erythematosus and bladder cancer. FASEB J 42: 3086–3097Google Scholar
  31. Yoshida A (1992) Molecular genetics of human aldehyde dehydrogenase. Pharmacogenetics 2: 139–147PubMedCrossRefGoogle Scholar
  32. Zbinden G (1992) The three eras of research in experimental toxicology. TIPS 13: 221–223PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Hermann M. Bolt
    • 1
  1. 1.Institut für ArbeitsphysiologieUniversität DortmundDortmundGermany

Personalised recommendations