Skip to main content

Connexin Genes and Cell Growth Control

  • Conference paper

Part of the book series: Archives of Toxicology ((TOXICOLOGY,volume 18))

Abstract

In multicellular organisms, individual cells not only maintain their own functions but also must behave as members of an orderly cellular society. Thus, cell growth is controlled both at the invididual cell level as well as by homeostasis within the cellular society. Known oncogenes and tumor-suppressor genes include not only genes involved in signal transduction and the cell cycle, but also those controlling growth factors and their receptors, which are important for individual cellular functions and cell-cell interaction, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

GJIC:

gap junctional intercellular communication

Cx26:

connexin 26 (similar for Cx32 and others)

SSCP:

single strand conformation polymorphism

CMTX:

X-linked Charcot-Marie-Tooth

References

  • Asamoto M, Oyamada M, El Aoumari A, Gros D, Yamasaki H (1991) Molecular mechanisms of TPA-mediated inhibition of GJIC; evidence for action on the assembly or function but not the expression of connexin 43 in rat liver epithelial cells. Mol Carcinogen, 4, 322–327

    Article  CAS  Google Scholar 

  • Berghoifen J, Scherer SS, Wang S, Oronzi Scott M, Bone J, Paul DL, Chen K, Lensch MW, Chance PF and Fischbeck KH (1993) Connexin mutations in X-linked Charcot- Marie-Tooth disease. Science, 262, 2039–2042

    Article  Google Scholar 

  • Beyer EC (1993) Gap junctions. Int Rev Cytol, 137C, 1–37

    CAS  Google Scholar 

  • Bond SL, Bechberger JF, Khoo NK and Naus CC (1994) Transfection of C6 glioma cells with connexin 32: the effects of expression of a non-endogenous gap junction protein. Cell Growth Differ, 5, 179–86

    PubMed  CAS  Google Scholar 

  • Britz-Cunningham SH, Shah MM, Zuppan CW and Fletcher WH (1995) Mutations of the connexin 43 gap-junction gene in patients with heart malformations and defects of laterality. New Engl J Med, 332, 1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Chen SC, Pelletier DB, Ao P, Boynton AL (1995) Connexin 43 reverses the stenotype of transformed cells and alters their expression of cyclin/cyclin-dependent kinases. Cell Growth Differ, 6, 681–690

    PubMed  CAS  Google Scholar 

  • Eghbali B, Kessler JA, Raid LM, Roy C and Spray DC (1991) Involvement of gap junction in tumorigenesis: transfection of tumor cells with connexin 32 cDNA retards growth “in vivo”. Proc Natl Acad Sci USA, 88, 10701–10705

    Article  PubMed  CAS  Google Scholar 

  • Faiweather N, Bell C, Cochrane S, Chelly J, Wang S, Mostacciulo ML, Monaco AP and Haites NE (1994) Mutations in the connexin 32 gene in X-linked dominant Charcot- Marie-Tooth disease (CMTX1) Hum Mol Genet, 3, 29–34

    Google Scholar 

  • Fitzgerald DJ, Mesnil M, Oyamada M, Tsuda H, Ito N and Yamasaki H (1989) Changes in gap junction protein (connexin 32) gene expression during rat liver carcinogenesis. J Cell Biochem, 41, 97–102

    Article  PubMed  CAS  Google Scholar 

  • Goldberg GS, Martyn KD and Lau AF (1994) A connexin 43 antisense vector reduces the ability of normal cells to inhibit the foci formation of transformed cells. Mol Carcinogen, 11, 106–114

    Article  CAS  Google Scholar 

  • Ionasescu V, Searby C and Ionasescu R (1994) Point mutations of the connexin 32 (GJB1) gene in X-linked dominant Charcot-Marie-Tooth neuropathy. Hum Mol Genet, 3, 355–358

    Article  PubMed  CAS  Google Scholar 

  • Jongen WMF, Fitzgerald DJ, Asamoto M, Piccoli, C, Slaga TH, Gros D, Takeichi M and Yamasaki H (1991) Regulation of connexin 43-mediated gap junctional interecellular communication by Ca++ in mouse epidermal cells is controlled by E-cadherin. J Cell Biol, 114, 545–555

    Article  PubMed  CAS  Google Scholar 

  • Klaunig JE and Ruch RJ (1990) Role of inhibtion of intercellular communciation in carcinogenesis. Lab Invest, 62, 135–46

    PubMed  CAS  Google Scholar 

  • Krutovskikh VA, Oyamada M and Yamasaki H (1991) Sequential changes of gap- junctional intercellular communications during multistage rat liver carcinogenesis: direct measurement of communication in vivo. Carcinogenesis, 12, 1701–1706

    Article  PubMed  CAS  Google Scholar 

  • Krutovskikh VA, Mazzoleni G, Mironov N, Omori Y, Aguelon A-M, Mesnil M, Berger F, Partensky C and Yamasaki H (1994) Altered homologous and heterologus gap junctional intercellular communication in primary human liver tumors associated with aberrant protein localization but not gene mutation of connexin 32. Int J Cancer, 56, 87–94

    Article  PubMed  CAS  Google Scholar 

  • Krutovskikh VA, Mesnil M, Mazzoleni G and Yamasaki H (1995) Inhibition of rat liver gap junction intercellular communication by tumor-promoting agents in vivo: association with aberrant localization of connexin proteins. Lab Invest, 72, 571–577

    PubMed  CAS  Google Scholar 

  • Krutovskikh VA and Yamasaki H (1995) Ex-vivo dye transfer assay as an approach to study gap junctional intercellular communication disorders in hepatocarcinogenesis. Prog in Cell Res, 4, 137–140

    Google Scholar 

  • Lin Z, Zhang Z, Han, Y, naus CC, Yu KR and Holtzer H (1995) Functional expression of gap junction gene Cx43 and the myogenic differentiation of rhabdomyosarcoma cells. Science China (Ser B), 38, 305–312

    Google Scholar 

  • Loewenstein WR (1979) Junctional intercellular communication in the postimplantation mouse embryo. Cell, 18, 399–409

    Article  Google Scholar 

  • Mandelboim O, Berke G, Fridkin M, Feldman M, Eisenstein M and Eisenbach L (1994) CTL induction by a tumour-associated antigen octapeptide derived from a murine lung caricnoma. Nature, 369, 67–71

    Article  PubMed  CAS  Google Scholar 

  • Mehta PP, Hotz-Wagenblatt A, Rose B, Shalloway D and Loewenstein WR (1991) Incorporation of the gene for a cell-cell channel protein into transformed cells leads to normalization of growth. J Memb Biol, 124, 207–225

    Article  CAS  Google Scholar 

  • Mesnil M and Yamasaki Y (1993) Cell-cell communication and growth control of normal and cancer cells: evidence and hypothesis. Mol Carcinogen, 7, 14–17

    Article  CAS  Google Scholar 

  • Mesnil M, Asamoto M, Piccoli C and Yamasaki H (1994) Possible molecular mechanisms of loss of homologous and heterologous gap junctionl intercellular communication in rat liver epithelial cell lines. Cell Adhes and Commun, 2, 377–384

    Article  CAS  Google Scholar 

  • Mesnil M, Krutovskikh VA, Piccoli C, Elfgang C, Traub O, Willecke K and Yamasaki H (1995) Negative growth control of HeLa cells by connexin genes: connexin species specificity. Cancer Res, 55, 629–639

    PubMed  CAS  Google Scholar 

  • Mironov N, Aguelon A-M, Potapova GI, Omori Y, Gorbunov OV, Klimenkov AA and Yamasaki H (1994) Alterations of (CA)n DNA repeats and tumor suppressor genes in human gastric cancer. Cancer Res, 54, 41–44

    PubMed  CAS  Google Scholar 

  • Murray AW and Fitzgerald DJ (1979) Tumor promoters inhibit metabolic cooperation in cocultures of epidermal and 3T3 cells. Biochem Biophys Res Commun, 91, 395–401

    Article  PubMed  CAS  Google Scholar 

  • Naus C, Elisevich K, Zhu D, Belliveau D and Del Maestro R (1992) In vivo growth of C6 glioma cells transfected with connexin 43 cDNA. Cancer Res, 52, 4208–4213

    PubMed  CAS  Google Scholar 

  • Oyamada M, Krutovskikh V, Mesnil M, Partensky C, Berger F and Yamasaki H (1990) Aberrant expression of gap junction gene in primary human hepatocellular carcinomas: increased expression of cardiac-type gap junction gene connexin 43. Mol Carcinogen, 3, 273–278

    Article  CAS  Google Scholar 

  • Pitts JD and Finbow ME (1986) The gap junction. J Cell Sci, 4 (Suppl.), 239–266

    CAS  Google Scholar 

  • Risinger JI, Berchuck A, Kohler MF and Boyd J (1994) Mutations of the E-cadherin gene in human gynecologic cancers. Nature Genet, 7, 98–102

    Article  PubMed  CAS  Google Scholar 

  • Rose B, Mehta PP and Loewenstein WR (1993) Gap junction protein gene suppresses tumorigenicity. Carcinogenesis, 14, 1073–1075

    Article  PubMed  CAS  Google Scholar 

  • Saez JC, Conner JA, Spray DC and Bennett MVL (1989) Hepatocyte gap junctions are permeable to a second messenger, inositol 1,4,5-triphosphate, and to calcium ions. Proc Natl Acad Sci USA, 86, 2708–2712

    Article  PubMed  CAS  Google Scholar 

  • Shimoyama Y, Hirohashi S, Hirano Sh, Noguchi M. Shimosato Y, Takeichi M and Abe O (1989) Cadherin cell-adhesion molecules in human epithelial tissues and carcinomas. Cancer Res, 49, 2128–2133

    PubMed  CAS  Google Scholar 

  • Swierenga SHH and Yamasaski H (1992) Performance of tests for cell transformation and gap junction intercellular communication for detecting nongenotoxic carcinogenic activity. In: Vainio H, Magee PN, McGregor DB and McMichael AJ (eds) Mechanisms of Carcinogenesis in Risk Identification, IARC Scientific Publications No. 116, Lyon, pp. 165–193

    Google Scholar 

  • Trosko JE, Jone C and Chang CC (1984) The use of in vitroassays to study and to detect tumor promoters. In: Börzsönyi M, Day NE, Lapis K and Yamasaki H (eds) Models, Mechanisms and Etiology of Tumour Promotion. IARC Scientific Publications No. 5 6, Lyon, pp. 239–252

    Google Scholar 

  • Trosko JE and Chang CC (1988) Nongenotoxic mechanisms in carcinogenesis: role of inhibited intercellular communication. Banburry Rep, 31, 139–170

    CAS  Google Scholar 

  • Yamasaki H (1990) Gap junctional intercellular communication and carcinogenesis. Carcinogenesis, 11, 1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Mesnil M, Omori Y, Mironov N and Krutovskikh V (1995) Aberrant control of connexin expression and functions in multistage rat and human hepatocarcinogenesis. Prog in Cell Res, 4, 79–82

    CAS  Google Scholar 

  • Yotti LP, Chang CC and Trosko JE (1979) Elimination of metabolic cooperation in Chinese hamster cells by a tumor promoter. Science, 206, 1089–1091

    Article  PubMed  CAS  Google Scholar 

  • Zhu D, Caveney S, Kidder GM and Naus CCG (1991) Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling and cell proliferation. Proc Natl Acad Sci USA, 88, 1883–1887

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamasaki, H., Krutovskikh, V., Mesnil, M., Omori, Y. (1996). Connexin Genes and Cell Growth Control. In: Seiler, J.P., Kroftová, O., Eybl, V. (eds) Toxicology - From Cells to Man. Archives of Toxicology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61105-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61105-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64696-6

  • Online ISBN: 978-3-642-61105-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics