Advertisement

Microbial Controls of Methane Oxidation in Temperate Forest and Agricultural Soils

  • P. A. Steudler
  • R. D. Jones
  • M. S. Castro
  • J. M. Melillo
  • D. L. Lewis
Part of the NATO ASI Series book series (volume 39)

Abstract

The tropospheric accumulation of the radiatively active gas methane (CH4) has been well-documented with annual increases of approximately 1% measured over the past several decades (Prather et al. 1995, Watson et al. 1990, 1992). Understanding the interactions between the biosphere and atmosphere is necessary to understand how future human activities will affect the global atmospheric CH4 budget.

Keywords

Sugar Maple Carbon Monoxide Oxidation Methane Consumption Methane Uptake Temperate Forest Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber J.D., Magill A., Boone R., Melillo J.M., Steudler P., Bowden R., (1993) Plant and soil responses to chronic nitrogen additions at the Harvard Forest Massachusetts. Ecol Appl 3:156–166CrossRefGoogle Scholar
  2. Adamsen A.P.S., King G.M. (1993) Methane consumption in temperate and subarctic forest soils: Rates, vertical zonation and response to water and nitrogen. Appl Environ Microbiol 59:485–490PubMedGoogle Scholar
  3. Bender M., Conrad R. (1993) Kinetics of methane oxidation in oxic soils. Chemosphere 26:687–696CrossRefGoogle Scholar
  4. Bender M., Conrad R. (1994) Microbial oxidation of methane, ammonium and carbon monoxide, and turnover of nitrous oxide and nitric oxide in soils. Biogeochemistry 27:97–112CrossRefGoogle Scholar
  5. Boone R.O. (1990) Soil organic matter as a potential net nitrogen sink in a fertilized cornfield, South Deerfield, Massachusetts, USA. Plant and Soil 128:191–198CrossRefGoogle Scholar
  6. Boone R.D. (1992) Influence of sampling date and substrate on nitrogen mineralization: comparison of laboratory-incubation and buried-bag methods for two Massachusetts forest soils. Can J For Res 22:1895–1900CrossRefGoogle Scholar
  7. Born M., Dörr H., Levin I. (1990) Methane consumption in aerated soils of the temperate zone. Tellus 42:(B)2–8CrossRefGoogle Scholar
  8. Bowden R.O., Steudler P.A., Melillo J.M., Aber J.D. (1990) Annual nitrous oxide fluxes from temperate forest soils in the northeastern united states. J Geophys Res 95:13,997-14,005Google Scholar
  9. Bowden R.D., Melillo J.M., Steudler P.A., Aber J.D. (1991) Effects of nitrogen additions on the annual nitrous oxide fluxes from temperate forest soil in the northeastern United States. J Geophys Res 96:9321–9328CrossRefGoogle Scholar
  10. Castro M.S., Peterjohn W.T., Melillo J.M., Steudler P.A., Gholz H.L., Lewis D., (1994a) Effects of urea fertilization on the exchange of CO2 N2O and CH4 between the atmosphere and soils in a Florida slash pine plantation. Can J For Res 24:9–13CrossRefGoogle Scholar
  11. Castro M.S., Melillo J.M., Steudler P.A., Chapman J.W. (1994b) Soil moisture as a predictor of methane uptake by forest soils. Can J For Res 24: in pressGoogle Scholar
  12. Castro M.S., Steudler P.A., Melillo J.M., Aber J.D., Bowden R.D. (1995) Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochem Cycles 9:1–10CrossRefGoogle Scholar
  13. Crill P. (1991) Seasonal patterns of methane uptake and carbon dioxide relase by a temperate woodland soil. Global Biogeochem Cycles 5:319–334CrossRefGoogle Scholar
  14. Dörr H., Katruff L., Levin I. (1993) Soil texture parameterization of the methane uptake in aerated soils. Chemosphere, 26:(1-4), 697–713CrossRefGoogle Scholar
  15. Griffiths R.P., Caldwell B.A., Clinc J.D., Eroich W.A., Morita R.Y. (1982) Field observations of methane concentrations and oxidation rates in the southeastern Bering Sea. Appl Environ Microbiol 44:435–446PubMedGoogle Scholar
  16. Hutsch B.W., Webster C.P., Powlson D.S. (1993) Long-term effects of nitrogen fertilization on methane oxidation in soil of the broadwalk wheat experiment. Soil Biol Biochem 25:1307–1315CrossRefGoogle Scholar
  17. Jones R.D., Morita R.Y. (1983a) Carbon monoxide oxidation by chemolithotrophic ammonium oxidizers. Can J Microbiol 29:1545–1551CrossRefGoogle Scholar
  18. Jones R.D., Morita R.Y. (1983b) Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl Environ Microbiol, 45:401–410PubMedGoogle Scholar
  19. Jones R.D., Morita R.Y., Griffiths R.P. (1984) Method for estimating in situ chemolithotrophic ammonium oxidation using carbon monoxide oxidation. Mar Ecol Prog Ser 17:259–269CrossRefGoogle Scholar
  20. Keller M., Goreau T.J., Wofsy S.C., Kaplan W.A., McElroy M.B. (1983) Production of nitrous oxide and consumption of methane by forest soils. Geophys Res Lett 10:1156–1159CrossRefGoogle Scholar
  21. King G.M., Adamsen A.P.S. (1992) Effects of temperature on methane consumption in a forest soil and pure cultures of the methanotroph methylomonas rebra. Appl Environ Microbiol 58:2758–2763PubMedGoogle Scholar
  22. King G.M. (1993) Ecological aspects of methane oxidation, a key determinant of global methane dynamics. In: Advances in Microbial Ecology (K.C. Marshall, ed.), Plenum Press, New York, pp. 431–468Google Scholar
  23. King G.M., Schnell S. (1994a) Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature 370:282–284CrossRefGoogle Scholar
  24. King G.M., Schnell S. (1994b) Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus ittrichosporium OB3b at low methane concentrations. Appl Environ Microbiol 60:3508–3513PubMedGoogle Scholar
  25. Koschorreck M., Conrad R. (1993) Oxidation of atmospheric methane in soil: Measurements in the field, in soil cores and in soil samples. Global Biogeochem cycles 7:109–121CrossRefGoogle Scholar
  26. Magill A.H., Aber J.D., Hendricks J.J., Bowden R.D., Melillo J.M., Steudler P.A. Biogeochemical responses of forest ecosystems to simulated chronic nitrogen deposition. Submitted to Ecological ApplicationsGoogle Scholar
  27. Mosier A.R., Schimel D.S. (1991) Influence of agricultural nitrogen on atmospheric methane and nitrous oxide. Chemistry and Industry 23:874–877Google Scholar
  28. Mosier A., Schimel D., Valentine D., Bronson K., Parton W. (1991) Methane and nitrous oxide fluxes in native, fertilized, and cultivated grassland. Nature 350:330–332CrossRefGoogle Scholar
  29. Nadelhoffer K.J., Aber J.D., Melillo J.M. (1983) Leaf-litter production and soil organic matter dynamics along a nitrogen mineralization gradient in Southern Wisconsin. Can J For Res 13:12–21CrossRefGoogle Scholar
  30. Nesbit S.P., Breitenbeck G.A. (1992) A laboratory study of factors influencing methane uptake by soils. Agric Ecosyst Environ 41:39–54CrossRefGoogle Scholar
  31. Ojima D.C., Valentine D.W., Mosier A.R., Parton W.J., Schimel D.C. (1993) Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere 26(1-4), 675–685CrossRefGoogle Scholar
  32. Pastor J., Aber J.D., McClaugherty C.A., Melillo J.M. (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268CrossRefGoogle Scholar
  33. Prather M., Oerwent R., Ehhalt D., Fraser P., Sanhueza E., Zhou X. (1995) Other trace gases and atmosphuric chemistry. In: Climate Change 1994 Radiative Forcing of Climate Change and An Evaluation of the IPCC IS92 Emission Scenarios. (Houghton J.T., Meira Filho L.G., Bruce J., Hoesung Lee, Callander B.A., Haites E., Harris N., Maskell K., eds.), Cambridge University Press, pp. 74–126Google Scholar
  34. Steudler P.A., Bowden R.D., Melillo J.M., Aber J.D. (1989) Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341:314–316CrossRefGoogle Scholar
  35. Steudler P.A., Melillo J.M., Bowden R.D., Castro M.S. (1991) The effects of natural and human disturbances on soil nitrogen dynamics and trace gas fluxes in a Puerto Rican wet forest. Biotropica 23(4a):356–363CrossRefGoogle Scholar
  36. Schnell S., King G.M. (1994) Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl Environ Microbiol 60:3514–3521PubMedGoogle Scholar
  37. Watson R.T., Rodhe H., Oeschger H., Siegenthaler U. (1990) Greenhouse gases and aerosols. In: Climate Change The IPCC Scientific Assessment, (Houghton J.T., Jenkins G.J., Ephraums J.J., eds.), Cambridge University Press, New York, pp 1–40Google Scholar
  38. Watson R.T., Meira F., Sanhuez E., Janetos A. (1992) Greenhouse gases: Sources and sinks and aerosols. In: Climate Change 1992 The Supplementary Report to The IPCC Scientific Assessment, (Houghton J.T., Callander B.A., Varney S.K., eds.), Cambridge University Press, New York, pp 25–46Google Scholar
  39. Yavitt J.B., Downey D.M., Lang G.E., Sextone A.J. (1990) Methane consumption in two temperate forest soils. Biogeochemistry 9:39–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • P. A. Steudler
    • 1
  • R. D. Jones
    • 2
  • M. S. Castro
    • 3
  • J. M. Melillo
    • 1
  • D. L. Lewis
    • 4
  1. 1.The Ecosystems CenterMarine Biological LaboratoryWoods HoleUSA
  2. 2.Drinking Water Research CenterFlorida International UniversityMiamiUSA
  3. 3.Appalachian Environmental LaboratoryUniversity of MarylandFrostburgUSA
  4. 4.Environmental Research LaboratoryUnited States Environmental Protection AgencyAthensUSA

Personalised recommendations